Food Web

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.
- Soils have properties of color and texture, capacity to retain water, and ability to support the growth of many kinds of plants, including those in our food supply.

Objects in the sky

- The sun provides the light and heat necessary to maintain the temperature of the earth.

Science in Personal and Social Perspectives

Personal health

- Nutrition is essential to health. Students should understand how the body uses food and how various foods contribute to health. Recommendations for good nutrition include eating a variety of foods, eating less sugar, and eating less fat.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Life Science

Populations and ecosystems

- Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.

- For ecosystems, the major source of energy is sunlight. Energy entering ecosystems as sunlight is transferred by producers into chemical energy through photosynthesis. That energy then passes from organism to organism in food webs.

Earth and Space Science

Structure of the earth system

- Soil consists of weathered rocks and decomposed organic material from dead plants, animals, and bacteria. Soils are often found in layers, with each having a different chemical composition and texture.

Science in Personal and Social Perspectives

Personal health

- Food provides energy and nutrients for growth and development. Nutrition requirements vary with body weight, age, sex, activity, and body functioning.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.
- Use technology and mathematics to improve investigations and communications.

Physical Science

Chemical Reactions

Chemical reactions may release or consume energy. Some reactions such as the burning
of fossil fuels release large amounts of energy by losing heat and by emitting light. Light
can initiate many chemical reactions such as photosynthesis and the evolution of urban
smog.

Life Science

Interdependence of organisms

- Energy flows through ecosystems in one direction, from photosynthetic organisms to herbivores to carnivores and decomposers.

Matter, energy, and organization in living systems

- All matter tends toward more disorganized states. Living systems require a continuous input of energy to maintain their chemical and physical organizations. With death, and the cessation of energy input, living systems rapidly disintegrate.
- The energy for life primarily derives from the sun. Plants capture energy by absorbing light and using it to form strong (covalent) chemical bonds between the atoms of carbon-containing (organic) molecules. These molecules can be used to assemble larger molecules with biological activity (including proteins, DNA, sugars, and fats). In addition, the energy stored in bonds between the atoms (chemical energy) can be used as sources of energy for life processes.

- The chemical bonds of food molecules contain energy. Energy is released when the bonds of food molecules are broken and new compounds with lower energy bonds are formed. Cells usually store this energy temporarily in phosphate bonds of a small highenergy compound called ATP.
- The complexity and organization of organisms accommodates the need for obtaining, transforming, transporting, releasing, and eliminating the matter and energy used to sustain the organism.
- The distribution and abundance of organisms and populations in ecosystems are limited by the availability of matter and energy and the ability of the ecosystem to recycle materials.
- As matter and energy flows through different levels of organization of living systems—cells, organs, organisms, communities—and between living systems and the physical environment, chemical elements are recombined in different ways. Each recombination results in storage and dissipation of energy into the environment as heat. Matter and energy are conserved in each change.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.