Amphibians

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Life cycles of organisms

- Plants and animals have life cycles that include being born, developing into adults, reproducing, and eventually dying. The details of this life cycle are different for different organisms.
 - Organisms and their environments
- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

- Use appropriate tools and techniques to gather, analyze, and interpret data.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

Life Science

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.
- Regulation of an organism's internal environment involves sensing the internal environment and changing physiological activities to keep conditions within the range required to survive.
- Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Diversity and adaptations of organisms

- Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Life Science

Biological evolution

- The great diversity of organisms is the result of more than 3.5 billion years of evolution that has filled every available niche with life forms.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Animal Locomotion

Grades K-4 Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.

Physical Science

Position and motion of objects

- An object's motion can be described by tracing and measuring its position over time.
- The position and motion of objects can be changed by pushing or pulling. The size of the change is related to the strength of the push or pull.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Organisms and their environments

- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Physical Science

Motions and forces

- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.
- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection from disease. These systems interact with one another.

Regulation and behavior

- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Archaeology

Grades K-4

Science as Inquiry

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.
- Scientists make the results of their investigations public; they describe the investigations in ways that enable others to repeat the investigations.
- Scientists review and ask questions about the results of other scientists' work.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Abilities to distinguish between natural objects and objects made by humans

- Some objects occur in nature; others have been designed and made by people to solve human problems and enhance the quality of life.
- Objects can be categorized into two groups, natural and designed.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Although men and women using scientific inquiry have learned much about the objects, events, and phenomena in nature, much more remains to be understood. Science will never be finished.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some

involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Mathematics is important in all aspects of scientific inquiry.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.
- Science advances through legitimate skepticism. Asking questions and querying other scientists' explanations is part of scientific inquiry. Scientists evaluate the explanations proposed by other scientists by examining evidence, comparing evidence, identifying faulty reasoning, pointing out statements that go beyond the evidence, and suggesting alternative explanations for the same observations.
- Scientific investigations sometimes result in new ideas and phenomena for study, generate new methods or procedures for an investigation, or develop new technologies to improve the collection of data. All of these results can lead to new investigations.

Life Science

Diversity and adaptations of organisms

- Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.
- Extinction of a species occurs when the environment changes and the adaptive characteristics of a species are insufficient to allow its survival. Fossils indicate that many organisms that lived long ago are extinct. Extinction of species is common; most of the species that have lived on the earth no longer exist.

Earth and Space Science

Earth's history

- Fossils provide important evidence of how life and environmental conditions have changed.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Many different people in different cultures have made and continue to make contributions to science and technology.

Science in Personal and Social Perspectives

Science and Technology in Society

- Scientists and engineers work in many different settings, including colleges and universities, businesses and industries, specific research institutes, and government agencies.
- Science cannot answer all questions and technology cannot solve all human problems or meet all human needs. Students should understand the difference between scientific and other questions. They should appreciate what science and technology can reasonably contribute to society and what they cannot do. For example, new technologies often will decrease some risks and increase others.

History and Nature of Science

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Physical Science

Structure of atoms

- Matter is made of minute particles called atoms, and atoms are composed of even smaller components. These components have measurable properties, such as mass and electrical charge. Each atom has a positively charged nucleus surrounded by negatively charged electrons. The electric force between the nucleus and electrons holds the atom together.

- The atom's nucleus is composed of protons and neutrons, which are much more massive than electrons. When an element has atoms that differ in the number of neutrons, these atoms are called different isotopes of the element.
- Radioactive isotopes are unstable and undergo spontaneous nuclear reactions, emitting particles and/or wavelike radiation. The decay of any one nucleus cannot be predicted, but a large group of identical nuclei decay at a predictable rate. This predictability can be used to estimate the age of materials that contain radioactive isotopes.

Structure and properties of matter

• Carbon atoms can bond to one another in chains, rings, and branching networks to form a variety of structures, including synthetic polymers, oils, and the large molecules essential to life.

Life Science

Behavior of organisms

Behavioral biology has implications for humans, as it provides links to psychology, sociology, and anthropology.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Architecture

Grades K-4 Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.

Science and Technology

Understandings about science and technology

- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.

Abilities to distinguish between natural objects and objects made by humans

- Some objects occur in nature; others have been designed and made by people to solve human problems and enhance the quality of life.
- Objects can be categorized into two groups, natural and designed.

Science in Personal and Social Perspectives

Science and technology in local challenges

- People continue inventing new ways of doing things, solving problems, and getting work done. New ideas and inventions often affect other people; sometimes the effects are good and sometimes they are bad. It is helpful to try to determine in advance how ideas and inventions will affect other people.
- Science and technology have greatly improved food quality and quantity, transportation, health, sanitation, and communication. These benefits of science and technology are not available to all of the people in the world.

Grades 5-8

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.

- Many different people in different cultures have made and continue to make contributions to science and technology.
- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.
- Perfectly designed solutions do not exist. All technological solutions have trade-offs, such as safety, cost, efficiency, and appearance. Engineers often build in back-up systems to provide safety. Risk is part of living in a highly technological world. Reducing risk often results in new technology.
- Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.

Science in Personal and Social Perspectives

Natural hazards

- Internal and external processes of the earth system cause natural hazards, events that change or destroy human and wildlife habitats, damage property, and harm or kill humans. Natural hazards include earthquakes, landslides, wildfires, volcanic eruptions, floods, storms, and even possible impacts of asteroids.

Science and technology in society

- Science influences society through its knowledge and world view. Scientific knowledge and the procedures used by scientists influence the way many individuals in society think about themselves, others, and the environment. The effect of science on society is neither entirely beneficial nor entirely detrimental.
- Technology influences society through its products and processes. Technology influences the quality of life and the ways people act and interact. Technological changes are often accompanied by social, political, and economic changes that can be beneficial or detrimental to individuals and to society. Social needs, attitudes, and values influence the direction of technological development.
- Scientists and engineers work in many different settings, including colleges and universities, businesses and industries, specific research institutes, and government agencies.

History and Nature of Science

History of science

- In historical perspective, science has been practiced by different individuals in different cultures. In looking at the history of many peoples, one finds that scientists and engineers of high achievement are considered to be among the most valued contributors to their culture.

Grades 9-12

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

Science in Personal and Social Perspectives

Natural and human-induced hazards

Natural and human-induced hazards present the need for humans to assess potential danger and risk. Many changes in the environment designed by humans bring benefits to society, as well as cause risks. Students should understand the costs and trade-offs of various hazards—ranging from those with minor risk to a few people to major catastrophes with major risk to many people. The scale of events and the accuracy with which scientists and engineers can (and cannot) predict events are important considerations.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Atmosphere

Grades **K-4**

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Communicate investigations and explanations.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Materials can exist in different states--solid, liquid, and gas. Some common materials, such as water, can be changed from one state to another by heating or cooling.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.

Organisms and their environments

- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.
- Objects in the sky
 - The sun provides the light and heat necessary to maintain the temperature of the earth.

Science in Personal and Social Perspectives

Changes in environments

- Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.
- Changes in environments can be natural or influenced by humans. Some changes are good, some are bad, and some are neither good nor bad. Pollution is a change in the

environment that can influence the health, survival, or activities of organisms, including humans.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.
- Use mathematics in all aspects of scientific inquiry.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some
 investigations involve observing and describing objects, organisms, or events; some
 involve collecting specimens; some involve experiments; some involve seeking more
 information; some involve discovery of new objects and phenomena; and some
 involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Mathematics is important in all aspects of scientific inquiry.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.
- Substances react chemically in characteristic ways with other substances to form new substances (compounds) with different characteristic properties. In chemical reactions, the total mass is conserved. Substances often are placed in categories or groups if they react in similar ways; metals is an example of such a group.

Transfer of energy

- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.

Earth and Space Science

Structure of the earth system

- The atmosphere is a mixture of nitrogen, oxygen, and trace gases that include water vapor. The atmosphere has different properties at different elevations.
- Clouds, formed by the condensation of water vapor, affect weather and climate.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.
- Use technology and mathematics to improve investigations and communications.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Physical Science

Chemical reactions

- Chemical reactions occur all around us, for example in health care, cooking, cosmetics, and automobiles. Complex chemical reactions involving carbon-based molecules take place constantly in every cell in our bodies.
- Chemical reactions may release or consume energy. Some reactions such as the burning of fossil fuels release large amounts of energy by losing heat and by emitting light. Light can initiate many chemical reactions such as photosynthesis and the evolution of urban smog.
- A large number of important reactions involve the transfer of either electrons (oxidation/reduction reactions) or hydrogen ions (acid/base reactions) between reacting ions, molecules, or atoms. In other reactions, chemical bonds are broken by heat or light to form very reactive radicals with electrons ready to form new bonds. Radical reactions control many processes such as the presence of ozone and greenhouse gases in the atmosphere, burning and processing of fossil fuels, the formation of polymers, and explosions.

Science in Personal and Social Perspectives

Environmental quality

- Materials from human societies affect both physical and chemical cycles of the earth.
- Many factors influence environmental quality. Factors that students might investigate include population growth, resource use, population distribution, overconsumption, the capacity of technology to solve problems, poverty, the role of economic, political, and religious views, and different ways humans view the earth.

Natural and human-induced hazards

- Human activities can enhance potential for hazards. Acquisition of resources, urban growth, and waste disposal can accelerate rates of natural change. Science and technology in local, national, and global challenges
- Humans have a major effect on other species. For example, the influence of humans on other organisms occurs through land use--which decreases space available to other species--and pollution--which changes the chemical composition of air, soil, and water.

Atoms

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Men and women have made a variety of contributions throughout the history of science and technology.
- Although men and women using scientific inquiry have learned much about the objects, events, and phenomena in nature, much more remains to be understood. Science will never be finished.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Mathematics is important in all aspects of scientific inquiry.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.
- Scientific investigations sometimes result in new ideas and phenomena for study, generate new methods or procedures for an investigation, or develop new technologies to improve the collection of data. All of these results can lead to new investigations.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.
- Chemical elements do not break down during normal laboratory reactions involving such treatments as heating, exposure to electric current, or reaction with acids. There are more than 100 known elements that combine in a multitude of ways to produce compounds, which account for the living and nonliving substances that we encounter.

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Many different people in different cultures have made and continue to make contributions to science and technology.
- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.

Science in Personal and Social Perspectives

Science and technology in society

- Science influences society through its knowledge and world view. Scientific knowledge and the procedures used by scientists influence the way many individuals in society think about themselves, others, and the environment. The effect of science on society is neither entirely beneficial nor entirely detrimental.
- Scientists and engineers work in many different settings, including colleges and universities, businesses and industries, specific research institutes, and government agencies.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.
- Nature of science
- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Physical Science

Structure of atoms

- Matter is made of minute particles called atoms, and atoms are composed of even smaller components. These components have measurable properties, such as mass and electrical charge. Each atom has a positively charged nucleus surrounded by negatively charged electrons. The electric force between the nucleus and electrons holds the atom together.
- The atom's nucleus is composed of protons and neutrons, which are much more massive than electrons. When an element has atoms that differ in the number of neutrons, these atoms are called different isotopes of the element.
- The nuclear forces that hold the nucleus of an atom together, at nuclear distances, are usually stronger than the electric forces that would make it fly apart. Nuclear reactions convert a fraction of the mass of interacting particles into energy, and they can release much greater amounts of energy than atomic interactions. Fission is the splitting of a large nucleus into smaller pieces. Fusion is the joining of two nuclei at extremely high temperature and pressure, and is the process responsible for the energy of the sun and other stars.

Structure and properties of matter

- Atoms interact with one another by transferring or sharing electrons that are furthest from the nucleus. These outer electrons govern the chemical properties of the element.
- An element is composed of a single type of atom. When elements are listed in order according to the number of protons (called the atomic number), repeating patterns of physical and chemical properties identify families of elements with similar properties. This "Periodic Table" is a consequence of the repeating pattern of outermost electrons and their permitted energies.
- Bonds between atoms are created when electrons are paired up by being transferred or shared. A substance composed of a single kind of atom is called an element. The atoms may be bonded together into molecules or crystalline solids. A compound is formed when two or more kinds of atoms bind together chemically.
- The physical properties of compounds reflect the nature of the interactions among its molecules. These interactions are determined by the structure of the molecule, including the constituent atoms and the distances and angles between them.
- Carbon atoms can bond to one another in chains, rings, and branching networks to form a variety of structures, including synthetic polymers, oils, and the large molecules essential to life.

Life Science

Interdependence of organisms

- The atoms and molecules on the earth cycle among the living and nonliving components of the biosphere.

Matter, energy, and organization in living systems

As matter and energy flows through different levels of organization of living systems—cells, organs, organisms, communities—and between living systems and the physical environment, chemical elements are recombined in different ways. Each recombination results in storage and dissipation of energy into the environment as heat. Matter and energy are conserved in each change.

Earth and Space Science

Geochemical cycles

- The earth is a system containing essentially a fixed amount of each stable chemical atom or element. Each element can exist in several different chemical reservoirs. Each element on earth moves among reservoirs in the solid earth, oceans, atmosphere, and organisms as part of geochemical cycles.
- Movement of matter between reservoirs is driven by the earth's internal and external sources of energy. These movements are often accompanied by a change in the physical and chemical properties of the matter. Carbon, for example, occurs in carbonate rocks such as limestone, in the atmosphere as carbon dioxide gas, in water as dissolved carbon dioxide, and in all organisms as complex molecules that control the chemistry of life.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Nature of scientific knowledge

- Science distinguishes itself from other ways of knowing and from other bodies of knowledge through the use of empirical standards, logical arguments, and skepticism, as scientists strive for the best possible explanations about the natural world.
- Because all scientific ideas depend on experimental and observational confirmation, all scientific knowledge is, in principle, subject to change as new evidence becomes available. The core ideas of science such as the conservation of energy or the laws of motion have been subjected to a wide variety of confirmations and are therefore unlikely to change in the areas in which they have been tested. In areas where data or understanding are incomplete, such as the details of human evolution or questions surrounding global warming, new data may well lead to changes in current ideas or resolve current conflicts. In situations where information is still fragmentary, it is

normal for scientific ideas to be incomplete, but this is also where the opportunity for making advances may be greatest.

Balance

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Position and motion of objects

The position and motion of objects can be changed by pushing or pulling. The size of the change is related to the strength of the push or pull.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.

Science in Personal and Social Perspectives

Science and technology in local challenges

- People continue inventing new ways of doing things, solving problems, and getting work done. New ideas and inventions often affect other people; sometimes the effects are good and sometimes they are bad. It is helpful to try to determine in advance how ideas and inventions will affect other people.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.
- Think critically and logically to make the relationships between evidence and explanations.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Physical Science

Motions and forces

- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.

Science and Technology

Understandings about science and technology

- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

Identify questions and concepts that guide scientific investigations.

- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Results of scientific inquiry—new knowledge and methods—emerge from different types of investigations and public communication among scientists. In communicating and defending the results of scientific inquiry, arguments must be logical and demonstrate connections between natural phenomena, investigations, and the historical body of scientific knowledge. In addition, the methods and procedures that scientists used to obtain evidence must be clearly reported to enhance opportunities for further investigation.

Physical Science

Motions and forces

- Objects change their motion only when a net force is applied. Laws of motion are used to calculate precisely the effects of forces on the motion of objects. The magnitude of the change in motion can be calculated using the relationship F = ma, which is independent of the nature of the force. Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object.
- Gravitation is a universal force that each mass exerts on any other mass. The strength of the gravitational attractive force between two masses is proportional to the masses and inversely proportional to the square of the distance between them.

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.
- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change. Plants also respond to stimuli.

Science and Technology

Understandings about science and technology

Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines,

including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.

- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Biodiversity

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms. Organisms and their environments
- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.
- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.
- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Science in Personal and Social Perspectives

Changes in environments

- Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.
- Changes in environments can be natural or influenced by humans. Some changes are good, some are bad, and some are neither good nor bad. Pollution is a change in the environment that can influence the health, survival, or activities of organisms, including humans.

History and Nature of Science

Science as a human endeavor

Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Life Science

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.
- Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.
- The number of organisms an ecosystem can support depends on the resources available and abiotic factors, such as quantity of light and water, range of temperatures, and soil composition. Given adequate biotic and abiotic resources and no disease or predators, populations (including humans) increase at rapid rates. Lack of resources and other factors, such as predation and climate, limit the growth of populations in specific niches in the ecosystem.

Diversity and adaptations of organisms

- Millions of species of animals, plants, and microorganisms are alive today. Although different species might look dissimilar, the unity among organisms becomes apparent from an analysis of internal structures, the similarity of their chemical processes, and the evidence of common ancestry.
- Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.
- Extinction of a species occurs when the environment changes and the adaptive characteristics of a species are insufficient to allow its survival. Fossils indicate that many organisms that lived long ago are extinct. Extinction of species is common; most of the species that have lived on the earth no longer exist.

Science in Personal and Social Perspectives

Populations, resources, and environments

- Causes of environmental degradation and resource depletion vary from region to region and from country to country.
- Natural hazards

- Human activities also can induce hazards through resource acquisition, urban growth, land-use decisions, and waste disposal. Such activities can accelerate many natural changes.

Risks and benefits

- Students should understand the risks associated with natural hazards (fires, floods, tornadoes, hurricanes, earthquakes, and volcanic eruptions), with chemical hazards (pollutants in air, water, soil, and food), with biological hazards (pollen, viruses, bacterial, and parasites), social hazards (occupational safety and transportation), and with personal hazards (smoking, dieting, and drinking).

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

- Use technology and mathematics to improve investigations and communications. Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Life Science

Biological evolution

- The millions of different species of plants, animals, and microorganisms that live on earth today are related by descent from common ancestors.

Interdependence of organisms

- Organisms both cooperate and compete in ecosystems. The interrelationships and interdependencies of these organisms may generate ecosystems that are stable for hundreds or thousands of years.
- Human beings live within the world's ecosystems. Increasingly, humans modify ecosystems as a result of population growth, technology, and consumption. Human destruction of habitats through direct harvesting, pollution, atmospheric changes,

and other factors is threatening current global stability, and if not addressed, ecosystems will be irreversibly affected.

Science in Personal and Social Perspectives

Natural resources

- Human populations use resources in the environment in order to maintain and improve their existence. Natural resources have been and will continue to be used to maintain human populations.
- The earth does not have infinite resources; increasing human consumption places severe stress on the natural processes that renew some resources, and it depletes those resources that cannot be renewed.
- Humans use many natural systems as resources. Natural systems have the capacity to reuse waste, but that capacity is limited. Natural systems can change to an extent that exceeds the limits of organisms to adapt naturally or humans to adapt technologically.

Environmental quality

- Materials from human societies affect both physical and chemical cycles of the earth.
- Many factors influence environmental quality. Factors that students might investigate include population growth, resource use, population distribution, overconsumption, the capacity of technology to solve problems, poverty, the role of economic, political, and religious views, and different ways humans view the earth. Natural and human-induced hazards
- Human activities can enhance potential for hazards. Acquisition of resources, urban growth, and waste disposal can accelerate rates of natural change.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Birds

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.

Earth and Space Science

Objects in the sky

- The sun, moon, stars, clouds, birds, and airplanes all have properties, locations, and movements that can be observed and described.

Science in Personal and Social Perspectives

Changes in environments

- Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.
- Changes in environments can be natural or influenced by humans. Some changes are good, some are bad, and some are neither good nor bad. Pollution is a change in the environment that can influence the health, survival, or activities of organisms, including humans.

History and Nature of Science

Science as a human endeavor

Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Understandings about scientific inquiry
 - Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
 - Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

Physical Science

Transfer of energy

- The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.

Reproduction and heredity

- In many species, including humans, females produce eggs and males produce sperm. Plants also reproduce sexually—the egg and sperm are produced in the flowers of flowering plants. An egg and sperm unite to begin development of a new individual. That new individual receives genetic information from its mother (via the egg) and its father (via the sperm). Sexually produced offspring never are identical to either of their parents.

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.
- Regulation of an organism's internal environment involves sensing the internal environment and changing physiological activities to keep conditions within the range required to survive.
- Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Populations and ecosystems

- Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating

other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.

Diversity and adaptations of organisms

 Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Life Science

Biological evolution

- The great diversity of organisms is the result of more than 3.5 billion years of evolution that has filled every available niche with life forms.
- Biological classifications are based on how organisms are related. Organisms are classified into a hierarchy of groups and subgroups based on similarities which reflect their evolutionary relationships. Species is the most fundamental unit of classification.

Interdependence of organisms

- Organisms both cooperate and compete in ecosystems. The interrelationships and interdependencies of these organisms may generate ecosystems that are stable for hundreds or thousands of years.
 Behavior of organisms
- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.
- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own

species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Blood and Circulation

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Communicate investigations and explanations.

Understandings about scientific inquiry

- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Life Science

The characteristics of organisms

- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct a scientific investigation.
- Develop descriptions, explanations, predictions, and models using evidence.
- Communicate scientific procedures and explanations.

Understandings about scientific inquiry

- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Life Science

Structure and function in living systems

- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection from disease. These systems interact with one another.
- Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.

Science in Personal and Social Perspectives

Personal health

- Regular exercise is important to the maintenance and improvement of health. The benefits of physical fitness include maintaining healthy weight, having energy and strength for routine activities, good muscle tone, bone strength, strong heart/lung systems, and improved mental health. Personal exercise, especially developing cardiovascular endurance, is the foundation of physical fitness.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct scientific investigations.
 - Understandings about scientific inquiry
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Bones and Muscles

Grades K-4 Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

Science and Technology

Understandings about science and technology

- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Abilities to distinguish between natural objects and objects made by humans

- Some objects occur in nature; others have been designed and made by people to solve human problems and enhance the quality of life.
- Objects can be categorized into two groups, natural and designed.

Science in Personal and Social Perspectives

Personal health

- Nutrition is essential to health. Students should understand how the body uses food and how various foods contribute to health. Recommendations for good nutrition include eating a variety of foods, eating less sugar, and eating less fat.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some

involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection from disease. These systems interact with one another.

Science and Technology

Understandings about science and technology

- Many different people in different cultures have made and continue to make contributions to science and technology.

Science in Personal and Social Perspectives

Personal health

- Regular exercise is important to the maintenance and improvement of health. The benefits of physical fitness include maintaining healthy weight, having energy and strength for routine activities, good muscle tone, bone strength, strong heart/lung systems, and improved mental health. Personal exercise, especially developing cardiovascular endurance, is the foundation of physical fitness.
- Food provides energy and nutrients for growth and development. Nutrition requirements vary with body weight, age, sex, activity, and body functioning.

Grades 9-12

Science as Inquiry

- Abilities necessary to do scientific inquiry
 - Design and conduct scientific investigations.

- Use technology and mathematics to improve investigations and communications. Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Life Science

Matter, energy, and organization in living systems

- The complexity and organization of organisms accommodates the need for obtaining, transforming, transporting, releasing, and eliminating the matter and energy used to sustain the organism.

Science in Personal and Social Perspectives

Personal and community health

 Selection of foods and eating patterns determine nutritional balance. Nutritional balance has a direct effect on growth and development and personal well-being. Personal and social factors--such as habits, family income, ethnic heritage, body size, advertising, and peer pressure--influence nutritional choices.

Brain

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Life Science

The characteristics of organisms

- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

Science and Technology

Understandings about science and technology

- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Science in Personal and Social Perspectives

Personal health

- Safety and security are basic needs of humans. Safety involves freedom from danger, risk, or injury. Security involves feelings of confidence and lack of anxiety and fear. Student understandings include following safety rules for home and school, preventing abuse and neglect, avoiding injury, knowing whom to ask for help, and when and how to say no.
- Individuals have some responsibility for their own health. Students should engage in personal care—dental hygiene, cleanliness, and exercise—that will maintain and improve health. Understandings include how communicable diseases, such as colds, are transmitted and some of the body's defense mechanisms that prevent or overcome illness.
- Different substances can damage the body and how it functions. Such substances include tobacco, alcohol, over-the-counter medicines, and illicit drugs. Students should understand that some substances, such as prescription drugs, can be beneficial, but that any substance can be harmful if used inappropriately.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- Cells carry on the many functions needed to sustain life. They grow and divide, thereby producing more cells. This requires that they take in nutrients, which they use to provide energy for the work that cells do and to make the materials that a cell or an organism needs.
- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.
- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection from disease. These systems interact with one another.

Regulation and behavior

- Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.

Science in Personal and Social Perspectives

Personal health

- Alcohol and other drugs are often abused substances. Such drugs change how the body functions and can lead to addiction.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

- Use technology and mathematics to improve investigations and communications. Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Life Science

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.
- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change.

Science and Technology

Understandings about science and technology

- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.

Science in Personal and Social Perspectives

Personal and community health

- Hazards and the potential for accidents exist. Regardless of the environment, the possibility of injury, illness, disability, or death may be present. Humans have a variety of mechanisms—sensory, motor, emotional, social, and technological—that can reduce and modify hazards.
- An individual's mood and behavior may be modified by substances. The modification may be beneficial or detrimental depending on the motives, type of substance, duration of use, pattern of use, level of influence, and short- and long-term effects. Students should understand that drugs can result in physical dependence and can increase the risk of injury, accidents, and death.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.
- Scientists have ethical traditions. Scientists value peer review, truthful reporting about the methods and outcomes of investigations, and making public the results of work. Violations of such norms do occur, but scientists responsible for such violations are censured by their peers.
- Scientists are influenced by societal, cultural, and personal beliefs and ways of viewing the world. Science is not separate from society but rather science is a part of society.

Buoyancy

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.

Position and motion of objects

- The position and motion of objects can be changed by pushing or pulling. The size of the change is related to the strength of the push or pull.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Physical Science

Motions and forces

- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

History and Nature of Science

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to questions and possible modification; and it must be based on historical and current scientific knowledge.

Physical Science

Motions and forces

- Objects change their motion only when a net force is applied. Laws of motion are used to calculate precisely the effects of forces on the motion of objects. The magnitude of the change in motion can be calculated using the relationship F = ma, which is independent of the nature of the force. Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object.
- Gravitation is a universal force that each mass exerts on any other mass. The strength of the gravitational attractive force between two masses is proportional to the masses and inversely proportional to the square of the distance between them.

Science and Technology

Understandings about science and technology

 Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.

History and Nature of Science Historical perspectives - Occasionally, there are advances in science and technology that have important and long-lasting effects on science and society. Examples of such advances include the following: Copernican revolution, Newtonian mechanics, relativity, geologic time scale, plate tectonics, atomic theory, nuclear physics, biological evolution, germ theory, Industrial revolution, molecular biology, information and communication, quantum theory, galactic universe, medical and health technology.

Caves

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.

Earth and Space Science

Properties of earth materials

Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

Changes in the earth and sky

- The surface of the earth changes. Some changes are due to slow processes, such as erosion and weathering, and some changes are due to rapid processes, such as landslides, volcanic eruptions, and earthquakes.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.
- Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.

Earth and Space Science

Structure of the earth system

- Water, which covers the majority of the earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the "water cycle." Water evaporates from the earth's surface, rises and cools as it moves to higher elevations, condenses as rain or snow, and falls to the surface where it collects in lakes, oceans, soil, and in rocks underground.
- Water is a solvent. As it passes through the water cycle it dissolves minerals and gases and carries them to the oceans.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Physical Science

Structure and properties of matter

- The physical properties of compounds reflect the nature of the interactions among its molecules. These interactions are determined by the structure of the molecule, including the constituent atoms and the distances and angles between them.

Life Science

Interdependence of organisms

- Organisms both cooperate and compete in ecosystems. The interrelationships and interdependencies of these organisms may generate ecosystems that are stable for hundreds or thousands of years.

Behavior of organisms

- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change. Plants also respond to stimuli.

Earth and Space Science

Geochemical cycles

- Movement of matter between reservoirs is driven by the earth's internal and external sources of energy. These movements are often accompanied by a change in the physical and chemical properties of the matter. Carbon, for example, occurs in carbonate rocks such as limestone, in the atmosphere as carbon dioxide gas, in water as dissolved carbon dioxide, and in all organisms as complex molecules that control the chemistry of life.

Science and Technology

Understandings about science and technology

 Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.

Cells

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Understandings about scientific inquiry
 - Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.

Life Science

The characteristics of organisms

- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

History and Nature of Science

Science as a human endeavor

- Men and women have made a variety of contributions throughout the history of science and technology.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- All organisms are composed of cells—the fundamental unit of life. Most organisms are single cells; other organisms, including humans, are multicellular.
- Cells carry on the many functions needed to sustain life. They grow and divide, thereby producing more cells. This requires that they take in nutrients, which they use to provide energy for the work that cells do and to make the materials that a cell or an organism needs.
- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell,

tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.

- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection from disease. These systems interact with one another.

Reproduction and heredity

- In many species, including humans, females produce eggs and males produce sperm. Plants also reproduce sexually—the egg and sperm are produced in the flowers of flowering plants. An egg and sperm unite to begin development of a new individual. That new individual receives genetic information from its mother (via the egg) and its father (via the sperm). Sexually produced offspring never are identical to either of their parents.
- Every organism requires a set of instructions for specifying its traits. Heredity is the passage of these instructions from one generation to another.
- Hereditary information is contained in genes, located in the chromosomes of each cell. Each gene carries a single unit of information. An inherited trait of an individual can be determined by one or by many genes, and a single gene can influence more than one trait. A human cell contains many thousands of different genes.
- The characteristics of an organism can be described in terms of a combination of traits. Some traits are inherited and others result from interactions with the environment.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Life Science

The cell

- Cells have particular structures that underlie their functions. Every cell is surrounded by a membrane that separates it from the outside world. Inside the cell is a concentrated mixture of thousands of different molecules which form a variety of specialized structures that carry out such cell functions as energy production, transport of molecules, waste disposal, synthesis of new molecules, and the storage of genetic material.

- Most cell functions involve chemical reactions. Food molecules taken into cells react to provide the chemical constituents needed to synthesize other molecules. Both breakdown and synthesis are made possible by a large set of protein catalysts, called enzymes. The breakdown of some of the food molecules enables the cell to store energy in specific chemicals that are used to carry out the many functions of the cell.
- Cells store and use information to guide their functions. The genetic information stored in DNA is used to direct the synthesis of the thousands of proteins that each cell requires.
- Cell functions are regulated. Regulation occurs both through changes in the activity of the functions performed by proteins and through the selective expression of individual genes. This regulation allows cells to respond to their environment and to control and coordinate cell growth and division.
- Cells can differentiate, and complex multicellular organisms are formed as a highly organized arrangement of differentiated cells. In the development of these multicellular organisms, the progeny from a single cell form an embryo in which the cells multiply and differentiate to form the many specialized cells, tissues and organs that comprise the final organism. This differentiation is regulated through the expression of different genes.

Molecular basis of heredity

- In all organisms, the instructions for specifying the characteristics of the organism are carried in DNA, a large polymer formed from subunits of four kinds (A, G, C, and T). The chemical and structural properties of DNA explain how the genetic information that underlies heredity is both encoded in genes (as a string of molecular "letters") and replicated (by a templating mechanism). Each DNA molecule in a cell forms a single chromosome.
- Most of the cells in a human contain two copies of each of 22 different chromosomes. In addition, there is a pair of chromosomes that determines sex: a female contains two X chromosomes and a male contains one X and one Y chromosome. Transmission of genetic information to offspring occurs through egg and sperm cells that contain only one representative from each chromosome pair. An egg and a sperm unite to form a new individual. The fact that the human body is formed from cells that contain two copies of each chromosome—and therefore two copies of each gene—explains many features of human heredity, such as how variations that are hidden in one generation can be expressed in the next.

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Chemical Reactions

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Communicate investigations and explanations.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.
- Materials can exist in different states—solid, liquid, and gas. Some common materials, such as water, can be changed from one state to another by heating or cooling.

Light, heat, electricity, and magnetism

- Heat can be produced in many ways, such as burning, rubbing, or mixing one substance with another. Heat can move from one object to another by conduction.
- Electricity in circuits can produce light, heat, sound, and magnetic effects. Electrical circuits require a complete loop through which an electrical current can pass.

Earth and Space Science

Properties of earth materials

Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

History and Nature of Science

Science as a human endeavor

• Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Communicate scientific procedures and explanations.

Understandings about scientific inquiry

Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.
- Substances react chemically in characteristic ways with other substances to form new substances (compounds) with different characteristic properties. In chemical reactions, the total mass is conserved. Substances often are placed in categories or groups if they react in similar ways; metals is an example of such a group.
- Chemical elements do not break down during normal laboratory reactions involving such treatments as heating, exposure to electric current, or reaction with acids. There are more than 100 known elements that combine in a multitude of ways to produce compounds, which account for the living and nonliving substances that we encounter.

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.
- Light interacts with matter by transmission (including refraction), absorption, or scattering (including reflection). To see an object, light from that object—emitted by or scattered from it—must enter the eye.
- Electrical circuits provide a means of transferring electrical energy when heat, light, sound, and chemical changes are produced.
- In most chemical and nuclear reactions, energy is transferred into or out of a system. Heat, light, mechanical motion, or electricity might all be involved in such transfers.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Physical Science

Structure and properties of matter

- Atoms interact with one another by transferring or sharing electrons that are furthest from the nucleus. These outer electrons govern the chemical properties of the element.
- Bonds between atoms are created when electrons are paired up by being transferred or shared. A substance composed of a single kind of atom is called an element. The

atoms may be bonded together into molecules or crystalline solids. A compound is formed when two or more kinds of atoms bind together chemically.

Chemical reactions

- Chemical reactions occur all around us, for example in health care, cooking, cosmetics, and automobiles. Complex chemical reactions involving carbon-based molecules take place constantly in every cell in our bodies.
- Chemical reactions may release or consume energy. Some reactions such as the burning of fossil fuels release large amounts of energy by losing heat and by emitting light. Light can initiate many chemical reactions such as photosynthesis and the evolution of urban smog.
- A large number of important reactions involve the transfer of either electrons (oxidation/reduction reactions) or hydrogen ions (acid/base reactions) between reacting ions, molecules, or atoms. In other reactions, chemical bonds are broken by heat or light to form very reactive radicals with electrons ready to form new bonds. Radical reactions control many processes such as the presence of ozone and greenhouse gases in the atmosphere, burning and processing of fossil fuels, the formation of polymers, and explosions.
- Chemical reactions can take place in time periods ranging from the few femtoseconds (10-15 seconds) required for an atom to move a fraction of a chemical bond distance to geologic time scales of billions of years. Reaction rates depend on how often the reacting atoms and molecules encounter one another, on the temperature, and on the properties—including shape—of the reacting species.
- Catalysts, such as metal surfaces, accelerate chemical reactions. Chemical reactions in living systems are catalyzed by protein molecules called enzymes.

Climates

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.

Physical Science

Light, heat, electricity, and magnetism

- Heat can be produced in many ways, such as burning, rubbing, or mixing one substance with another. Heat can move from one object to another by conduction.

Life Science

Organisms and their environments

- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.
- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Earth and Space Science

Properties of earth materials

Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

Objects in the sky

- The sun provides the light and heat necessary to maintain the temperature of the earth.

Changes in the earth and sky

- The surface of the earth changes. Some changes are due to slow processes, such as erosion and weathering, and some changes are due to rapid processes, such as landslides, volcanic eruptions, and earthquakes.
- Weather changes from day to day and over the seasons. Weather can be described by measurable quantities, such as temperature, wind direction and speed, and precipitation.
- Objects in the sky have patterns of movement. The sun, for example, appears to move across the sky in the same way every day, but its path changes slowly over the seasons. The moon moves across the sky on a daily basis much like the sun. The observable shape of the moon changes from day to day in a cycle that lasts about a month.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Science in Personal and Social Perspectives

Changes in environments

- Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.
- Changes in environments can be natural or influenced by humans. Some changes are good, some are bad, and some are neither good nor bad. Pollution is a change in the environment that can influence the health, survival, or activities of organisms, including humans.
- Some environmental changes occur slowly, and others occur rapidly. Students should understand the different consequences of changing environments in small increments over long periods as compared with changing environments in large increments over short periods.

History and Nature of Science

Science as a human endeavor

- Men and women have made a variety of contributions throughout the history of science and technology.
- Although men and women using scientific inquiry have learned much about the objects, events, and phenomena in nature, much more remains to be understood. Science will never be finished.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

- Abilities necessary to do scientific inquiry
 - Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data. Understandings about scientific inquiry
 - Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Mathematics is important in all aspects of scientific inquiry.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Physical Science

Transfer of energy

- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.
- In most chemical and nuclear reactions, energy is transferred into or out of a system. Heat, light, mechanical motion, or electricity might all be involved in such transfers.
- The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.

Life Science

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.
- The number of organisms an ecosystem can support depends on the resources available and abiotic factors, such as quantity of light and water, range of temperatures, and soil composition. Given adequate biotic and abiotic resources and no disease or predators, populations (including humans) increase at rapid rates. Lack of resources and other factors, such as predation and climate, limit the growth of populations in specific niches in the ecosystem.

Earth and Space Science

Structure of the earth system

- Water, which covers the majority of the earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the "water cycle." Water evaporates from the earth's surface, rises and cools as it moves to higher elevations, condenses as rain or snow, and falls to the surface where it collects in lakes, oceans, soil, and in rocks underground.
- The atmosphere is a mixture of nitrogen, oxygen, and trace gases that include water vapor. The atmosphere has different properties at different elevations.
- Clouds, formed by the condensation of water vapor, affect weather and climate.
- Global patterns of atmospheric movement influence local weather. Oceans have a major effect on climate, because water in the oceans holds a large amount of heat.

Earth in the solar system

- The sun is the major source of energy for phenomena on the earth's surface, such as growth of plants, winds, ocean currents, and the water cycle. Seasons result from variations in the amount of the sun's energy hitting the surface, due to the tilt of the earth's rotation on its axis and the length of the day.

Science in Personal and Social Perspectives

Natural hazards

- Internal and external processes of the earth system cause natural hazards, events that change or destroy human and wildlife habitats, damage property, and harm or kill humans. Natural hazards include earthquakes, landslides, wildfires, volcanic eruptions, floods, storms, and even possible impacts of asteroids.

- Human activities also can induce hazards through resource acquisition, urban growth, land-use decisions, and waste disposal. Such activities can accelerate many natural changes.

Science and technology in society

- Scientists and engineers work in many different settings, including colleges and universities, businesses and industries, specific research institutes, and government agencies.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Physical Science

Conservation of energy and the increase in disorder

- Everything tends to become less organized and less orderly over time. Thus, in all energy transfers, the overall effect is that the energy is spread out uniformly. Examples are the transfer of energy from hotter to cooler objects by conduction, radiation, or convection and the warming of our surroundings when we burn fuels.

Earth and Space Science

Energy in the earth system

- Earth systems have internal and external sources of energy, both of which create heat. The sun is the major external source of energy. Two primary sources of internal

energy are the decay of radioactive isotopes and the gravitational energy from the earth's original formation.

- Heating of earth's surface and atmosphere by the sun drives convection within the atmosphere and oceans, producing winds and ocean currents.
- Global climate is determined by energy transfer from the sun at and near the earth's surface. This energy transfer is influenced by dynamic processes such as cloud cover and the earth's rotation, and static conditions such as the position of mountain ranges and oceans.

Geochemical cycles

- Movement of matter between reservoirs is driven by the earth's internal and external sources of energy. These movements are often accompanied by a change in the physical and chemical properties of the matter. Carbon, for example, occurs in carbonate rocks such as limestone, in the atmosphere as carbon dioxide gas, in water as dissolved carbon dioxide, and in all organisms as complex molecules that control the chemistry of life.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

Science in Personal and Social Perspectives

Environmental quality

- Natural ecosystems provide an array of basic processes that affect humans. Those processes include maintenance of the quality of the atmosphere, generation of soils, control of the hydrologic cycle, disposal of wastes, and recycling of nutrients. Humans are changing many of these basic processes, and the changes may be detrimental to humans.
- Materials from human societies affect both physical and chemical cycles of the earth.
- Many factors influence environmental quality. Factors that students might investigate include population growth, resource use, population distribution, overconsumption, the capacity of technology to solve problems, poverty, the role of economic, political, and religious views, and different ways humans view the earth.

Natural and human-induced hazards

- Normal adjustments of earth may be hazardous for humans. Humans live at the interface between the atmosphere driven by solar energy and the upper mantle where convection creates changes in the earth's solid crust. As societies have grown, become stable, and come to value aspects of the environment, vulnerability to natural processes of change has increased.
- Human activities can enhance potential for hazards. Acquisition of resources, urban growth, and waste disposal can accelerate rates of natural change.

History and Nature of Science

Nature of scientific knowledge

- Because all scientific ideas depend on experimental and observational confirmation, all scientific knowledge is, in principle, subject to change as new evidence becomes available. The core ideas of science such as the conservation of energy or the laws of motion have been subjected to a wide variety of confirmations and are therefore unlikely to change in the areas in which they have been tested. In areas where data or understanding are incomplete, such as the details of human evolution or questions surrounding global warming, new data may well lead to changes in current ideas or resolve current conflicts. In situations where information is still fragmentary, it is normal for scientific ideas to be incomplete, but this is also where the opportunity for making advances may be greatest.

Comets and Meteors

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.

Earth and Space Science

Objects in the sky

- The sun, moon, stars, clouds, birds, and airplanes all have properties, locations, and movements that can be observed and described.
- The sun provides the light and heat necessary to maintain the temperature of the earth.

Changes in the earth and sky

- The surface of the earth changes. Some changes are due to slow processes, such as erosion and weathering, and some changes are due to rapid processes, such as landslides, volcanic eruptions, and earthquakes.
- Weather changes from day to day and over the seasons. Weather can be described by measurable quantities, such as temperature, wind direction and speed, and precipitation.
- Objects in the sky have patterns of movement. The sun, for example, appears to move across the sky in the same way every day, but its path changes slowly over the seasons. The moon moves across the sky on a daily basis much like the sun. The observable shape of the moon changes from day to day in a cycle that lasts about a month.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Develop descriptions, explanations, predictions, and models using evidence.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more

information; some involve discovery of new objects and phenomena; and some involve making models.

- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

Physical Science

Properties and changes of properties in matter

A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

Earth and Space Science

Structure of the earth system

- Land forms are the result of a combination of constructive and destructive forces. Constructive forces include crustal deformation, volcanic eruption, and deposition of sediment, while destructive forces include weathering and erosion.

Earth in the solar system

- The earth is the third planet from the sun in a system that includes the moon, the sun, eight other planets and their moons, and smaller objects, such as asteroids and comets. The sun, an average star, is the central and largest body in the solar system.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.

Earth and Space Science

The origin and evolution of the earth system

- The sun, the earth, and the rest of the solar system formed from a nebular cloud of dust and gas 4.6 billion years ago. The early earth was very different from the planet we live on today.

The origin and evolution of the universe

- The origin of the universe remains one of the greatest questions in science. The "big bang" theory places the origin between 10 and 20 billion years ago, when the universe began in a hot dense state; according to this theory, the universe has been expanding ever since.
- Early in the history of the universe, matter, primarily the light atoms hydrogen and helium, clumped together by gravitational attraction to form countless trillions of stars. Billions of galaxies, each of which is a gravitationally bound cluster of billions of stars, now form most of the visible mass in the universe.

Communication

Grades K-4 Science as Inquiry

Abilities necessary to do scientific inquiry

Plan and conduct a simple investigation.

Life Science

The characteristics of organisms

- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Science and Technology

Abilities to distinguish between natural objects and objects made by humans

- Some objects occur in nature; others have been designed and made by people to solve human problems and enhance the quality of life.
- Objects can be categorized into two groups, natural and designed.

Science in Personal and Social Perspectives

Science and technology in local challenges

- People continue inventing new ways of doing things, solving problems, and getting work done. New ideas and inventions often affect other people; sometimes the effects are good and sometimes they are bad. It is helpful to try to determine in advance how ideas and inventions will affect other people.

History and Nature of Science

Science as a human endeavor

Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct a scientific investigation.

Life Science

Regulation and behavior

 Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct scientific investigations.

Life Science

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Computers

Grades K-4 Science as Inquiry

Abilities necessary to do scientific inquiry

Ask a question about objects, organisms, and events in the environment. Plan and conduct a simple investigation.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.

Light, heat, electricity, and magnetism

- Electricity in circuits can produce light, heat, sound, and magnetic effects. Electrical circuits require a complete loop through which an electrical current can pass.

Science and Technology

Understandings about science and technology

- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.

Science in Personal and Social Perspectives

Science and technology in local challenges

- People continue inventing new ways of doing things, solving problems, and getting work done. New ideas and inventions often affect other people; sometimes the effects are good and sometimes they are bad. It is helpful to try to determine in advance how ideas and inventions will affect other people.
- Science and technology have greatly improved food quality and quantity, transportation, health, sanitation, and communication. These benefits of science and technology are not available to all of the people in the world.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Men and women have made a variety of contributions throughout the history of science and technology.

Grades 5-8

Science as Inquiry

Understandings about scientific inquiry

- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Physical Science

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.

- Electrical circuits provide a means of transferring electrical energy when heat, light, sound, and chemical changes are produced.

Science and Technology

Understandings about science and technology

- Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.
- Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.

Science in Personal and Social Perspectives

Science and technology in society

- Technology influences society through its products and processes. Technology influences the quality of life and the ways people act and interact. Technological changes are often accompanied by social, political, and economic changes that can be beneficial or detrimental to individuals and to society. Social needs, attitudes, and values influence the direction of technological development.
- Science and technology have advanced through contributions of many different people, in different cultures, at different times in history. Science and technology have contributed enormously to economic growth and productivity among societies and groups within societies.

Grades 9-12

Science as Inquiry

Understandings about scientific inquiry

- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Physical Science

Interactions of energy and matter

- In some materials, such as metals, electrons flow easily, whereas in insulating materials such as glass they can hardly flow at all. Semiconducting materials have intermediate behavior. At low temperatures some materials become superconductors and offer no resistance to the flow of electrons.

Science and Technology

Understandings about science and technology

- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by

its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

Deserts

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.

Life Science

The characteristics of organisms

- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.
- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.
- Soils have properties of color and texture, capacity to retain water, and ability to support the growth of many kinds of plants, including those in our food supply.

Objects in the sky

- The sun provides the light and heat necessary to maintain the temperature of the earth.
 - Changes in the earth and sky
- Weather changes from day to day and over the seasons. Weather can be described by measurable quantities, such as temperature, wind direction and speed, and precipitation.

Science in Personal and Social Perspectives

Changes in environments

- Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Physical Science

Transfer of energy

- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.
- Light interacts with matter by transmission (including refraction), absorption, or scattering (including reflection). To see an object, light from that object—emitted by or scattered from it—must enter the eye.
- The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.

Life Science

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.
- Regulation of an organism's internal environment involves sensing the internal environment and changing physiological activities to keep conditions within the range required to survive.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.
- Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.
- For ecosystems, the major source of energy is sunlight. Energy entering ecosystems as sunlight is transferred by producers into chemical energy through photosynthesis. That energy then passes from organism to organism in food webs.

Diversity and adaptations of organisms

- Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

Earth and Space Science

Structure of the earth system

- Clouds, formed by the condensation of water vapor, affect weather and climate.
- Global patterns of atmospheric movement influence local weather. Oceans have a major effect on climate, because water in the oceans holds a large amount of heat.

Earth in the solar system

- The sun is the major source of energy for phenomena on the earth's surface, such as growth of plants, winds, ocean currents, and the water cycle. Seasons result from variations in the amount of the sun's energy hitting the surface, due to the tilt of the earth's rotation on its axis and the length of the day.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.

Earth and Space Science

Energy in the earth system

- Heating of earth's surface and atmosphere by the sun drives convection within the atmosphere and oceans, producing winds and ocean currents.
- Global climate is determined by energy transfer from the sun at and near the earth's surface. This energy transfer is influenced by dynamic processes such as cloud cover and the earth's rotation, and static conditions such as the position of mountain ranges and oceans.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Digestion

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues. Organisms and their environments
- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.

Science in Personal and Social Perspectives

Personal health

- Nutrition is essential to health. Students should understand how the body uses food and how various foods contribute to health. Recommendations for good nutrition include eating a variety of foods, eating less sugar, and eating less fat.

History and Nature of Science

Science as a human endeavor

• Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Physical Science

Transfer of energy

In most chemical and nuclear reactions, energy is transferred into or out of a system. Heat, light, mechanical motion, or electricity might all be involved in such transfers.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection from disease. These systems interact with one another.

Science in Personal and Social Perspectives

- Personal health
 - Food provides energy and nutrients for growth and development. Nutrition requirements vary with body weight, age, sex, activity, and body functioning.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Life Science

Matter, energy, and organization in living systems

- The chemical bonds of food molecules contain energy. Energy is released when the bonds of food molecules are broken and new compounds with lower energy bonds are formed. Cells usually store this energy temporarily in phosphate bonds of a small high-energy compound called ATP.
- The complexity and organization of organisms accommodates the need for obtaining, transforming, transporting, releasing, and eliminating the matter and energy used to sustain the organism.

Science in Personal and Social Perspectives

Personal and community health

- Selection of foods and eating patterns determine nutritional balance. Nutritional balance has a direct effect on growth and development and personal well-being. Personal and social factors—such as habits, family income, ethnic heritage, body size, advertising, and peer pressure—influence nutritional choices.

History and Nature of Science

Historical perspectives

- In history, diverse cultures have contributed scientific knowledge and technologic inventions. Modern science began to evolve rapidly in Europe several hundred years ago. During the past two centuries, it has contributed significantly to the industrialization of Western and non-Western cultures. However, other, non-European cultures have developed scientific ideas and solved human problems through technology.

Dinosaurs

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.

Life Science

Organisms and their environments

An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.

Earth and Space Science

Properties of earth materials

Fossils provide evidence about the plants and animals that lived long ago and the nature of the environment at that time.

Grades 5-8

Life Science

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.

Diversity and adaptations of organisms

 Éxtinction of a species occurs when the environment changes and the adaptive characteristics of a species are insufficient to allow its survival. Fossils indicate that many organisms that lived long ago are extinct. Extinction of species is common; most of the species that have lived on the earth no longer exist.

Earth and Space Science

Structure of the earth system

- Soil consists of weathered rocks and decomposed organic material from dead plants, animals, and bacteria. Soils are often found in layers, with each having a different chemical composition and texture.
- Living organisms have played many roles in the earth system, including affecting the composition of the atmosphere, producing some types of rocks, and contributing to the weathering of rocks.

Earth's history

- The earth processes we see today, including erosion, movement of lithospheric plates, and changes in atmospheric composition, are similar to those that occurred in the past. earth history is also influenced by occasional catastrophes, such as the impact of an asteroid or comet.
- Fossils provide important evidence of how life and environmental conditions have changed.

Grades 9-12

Science as Inquiry

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to questions and possible modification; and it must be based on historical and current scientific knowledge.

Life Science

Biological evolution

- The great diversity of organisms is the result of more than 3.5 billion years of evolution that has filled every available niche with life forms.
- Natural selection and its evolutionary consequences provide a scientific explanation for the fossil record of ancient life forms, as well as for the striking molecular similarities observed among the diverse species of living organisms.

Interdependence of organisms

- Organisms both cooperate and compete in ecosystems. The interrelationships and interdependencies of these organisms may generate ecosystems that are stable for hundreds or thousands of years.
 Behavior of organisms
- Like other aspects of an organism's biology, behaviors have evolved through natural selection. Behaviors often have an adaptive logic when viewed in terms of evolutionary principles.

Earth and Space Science

The origin and evolution of the earth system

- The sun, the earth, and the rest of the solar system formed from a nebular cloud of dust and gas 4.6 billion years ago. The early earth was very different from the planet we live on today.
- Geologic time can be estimated by observing rock sequences and using fossils to correlate the sequences at various locations. Current methods include using the known decay rates of radioactive isotopes present in rocks to measure the time since the rock was formed.
- Evidence for one-celled forms of life—the bacteria—extends back more than 3.5 billion years. The evolution of life caused dramatic changes in the composition of the earth's atmosphere, which did not originally contain oxygen.

History and Nature of Science

Nature of scientific knowledge

- Because all scientific ideas depend on experimental and observational confirmation, all scientific knowledge is, in principle, subject to change as new evidence becomes available. The core ideas of science such as the conservation of energy or the laws of motion have been subjected to a wide variety of confirmations and are therefore unlikely to change in the areas in which they have been tested. In areas where data or understanding are incomplete, such as the details of human evolution or questions surrounding global warming, new data may well lead to changes in current ideas or resolve current conflicts. In situations where information is still fragmentary, it is normal for scientific ideas to be incomplete, but this is also where the opportunity for making advances may be greatest.

Do-It-Yourself Science

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.
- Scientists make the results of their investigations public; they describe the investigations in ways that enable others to repeat the investigations.
- Scientists review and ask questions about the results of other scientists' work.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Materials can exist in different states—solid, liquid, and gas. Some common materials, such as water, can be changed from one state to another by heating or cooling.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Although men and women using scientific inquiry have learned much about the objects, events, and phenomena in nature, much more remains to be understood. Science will never be finished.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.
- Think critically and logically to make the relationships between evidence and explanations.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some

involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Physical Science

Motions and forces

- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude.

Unbalanced forces will cause changes in the speed or direction of an object's motion. Transfer of energy

Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.

Earth and Space Science

Structure of the earth system

- The atmosphere is a mixture of nitrogen, oxygen, and trace gases that include water vapor. The atmosphere has different properties at different elevations.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.

History and Nature of Science

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.
- Use technology and mathematics to improve investigations and communications.

- Formulate and revise scientific explanations and models using logic and evidence. Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Physical Science

Structure of atoms

- Matter is made of minute particles called atoms, and atoms are composed of even smaller components. These components have measurable properties, such as mass and electrical charge. Each atom has a positively charged nucleus surrounded by negatively charged electrons. The electric force between the nucleus and electrons holds the atom together.

Structure and properties of matter

- Atoms interact with one another by transferring or sharing electrons that are furthest from the nucleus. These outer electrons govern the chemical properties of the element. Motions and forces
- Objects change their motion only when a net force is applied. Laws of motion are used to calculate precisely the effects of forces on the motion of objects. The magnitude of the change in motion can be calculated using the relationship F = ma, which is independent of the nature of the force. Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object.

Conservation of energy and the increase in disorder

- Heat consists of random motion and the vibrations of atoms, molecules, and ions. The higher the temperature, the greater the atomic or molecular motion.

Science and Technology

Understandings about science and technology

- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Nature of scientific knowledge

- Science distinguishes itself from other ways of knowing and from other bodies of knowledge through the use of empirical standards, logical arguments, and skepticism, as scientists strive for the best possible explanations about the natural world.
- Scientific explanations must meet certain criteria. First and foremost, they must be consistent with experimental and observational evidence about nature, and must

make accurate predictions, when appropriate, about systems being studied. They should also be logical, respect the rules of evidence, be open to criticism, report methods and procedures, and make knowledge public. Explanations on how the natural world changes based on myths, personal beliefs, religious values, mystical scientific.

- Because all scientific ideas depend on experimental and observational confirmation, all scientific knowledge is, in principle, subject to change as new evidence becomes available. The core ideas of science such as the conservation of energy or the laws of motion have been subjected to a wide variety of confirmations and are therefore unlikely to change in the areas in which they have been tested. In areas where data or understanding are incomplete, such as the details of human evolution or questions surrounding global warming, new data may well lead to changes in current ideas or resolve current conflicts. In situations where information is still fragmentary, it is normal for scientific ideas to be incomplete, but this is also where the opportunity for making advances may be greatest.

Earthquakes

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.
- Communicate investigations and explanations.

Understandings about scientific inquiry

- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Earth and Space Science

Properties of earth materials

Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

Changes in the earth and sky

- The surface of the earth changes. Some changes are due to slow processes, such as erosion and weathering, and some changes are due to rapid processes, such as landslides, volcanic eruptions, and earthquakes.

Science in Personal and Social Perspectives

Science and technology in local challenges

- Science and technology have greatly improved food quality and quantity, transportation, health, sanitation, and communication. These benefits of science and technology are not available to all of the people in the world.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Develop descriptions, explanations, predictions, and models using evidence. Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Earth and Space Science

Structure of the earth system

- The solid earth is layered with a lithosphere; hot, convecting mantle; and dense, metallic core.

- Lithospheric plates on the scales of continents and oceans constantly move at rates of centimeters per year in response to movements in the mantle. Major geological events, such as earthquakes, volcanic eruptions, and mountain building, result from these plate motions.
- Land forms are the result of a combination of constructive and destructive forces. Constructive forces include crustal deformation, volcanic eruption, and deposition of sediment, while destructive forces include weathering and erosion.

Science in Personal and Social Perspectives

Natural hazards

- Internal and external processes of the earth system cause natural hazards, events that change or destroy human and wildlife habitats, damage property, and harm or kill humans. Natural hazards include earthquakes, landslides, wildfires, volcanic eruptions, floods, storms, and even possible impacts of asteroids.

Risks and benefits

- Students should understand the risks associated with natural hazards (fires, floods, tornadoes, hurricanes, earthquakes, and volcanic eruptions), with chemical hazards (pollutants in air, water, soil, and food), with biological hazards (pollen, viruses, bacterial, and parasites), social hazards (occupational safety and transportation), and with personal hazards (smoking, dieting, and drinking).
- Important personal and social decisions are made based on perceptions of benefits and risks.

History and Nature of Science

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Use technology and mathematics to improve investigations and communications. Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Physical Science

Interactions of energy and matter

- Waves, including sound and seismic waves, waves on water, and light waves, have energy and can transfer energy when they interact with matter.

Earth and Space Science

Energy in the earth system

The outward transfer of earth's internal heat drives convection circulation in the mantle that propels the plates comprising earth's surface across the face of the globe.

Science in Personal and Social Perspectives

Natural and human-induced hazards

- Normal adjustments of earth may be hazardous for humans. Humans live at the interface between the atmosphere driven by solar energy and the upper mantle where convection creates changes in the earth's solid crust. As societies have grown, become stable, and come to value aspects of the environment, vulnerability to natural processes of change has increased.
- Some hazards, such as earthquakes, volcanic eruptions, and severe weather, are rapid and spectacular. But there are slow and progressive changes that also result in problems for individuals and societies. For example, change in stream channel position, erosion of bridge foundations, sedimentation in lakes and harbors, coastal erosions, and continuing erosion and wasting of soil and landscapes can all negatively affect society.
- Natural and human-induced hazards present the need for humans to assess potential danger and risk. Many changes in the environment designed by humans bring benefits to society, as well as cause risks. Students should understand the costs and trade-offs of various hazards—ranging from those with minor risk to a few people to major catastrophes with major risk to many people. The scale of events and the accuracy with which scientists and engineers can (and cannot) predict events are important considerations.

Earth's Crust

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

 Materials can exist in different states—solid, liquid, and gas. Some common materials, such as water, can be changed from one state to another by heating or cooling.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

Changes in the earth and sky

- The surface of the earth changes. Some changes are due to slow processes, such as erosion and weathering, and some changes are due to rapid processes, such as landslides, volcanic eruptions, and earthquakes.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Develop descriptions, explanations, predictions, and models using evidence. Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Earth and Space Science

Structure of the earth system

- The solid earth is layered with a lithosphere; hot, convecting mantle; and dense, metallic core.
- Lithospheric plates on the scales of continents and oceans constantly move at rates of centimeters per year in response to movements in the mantle. Major geological

events, such as earthquakes, volcanic eruptions, and mountain building, result from these plate motions.

- Land forms are the result of a combination of constructive and destructive forces. Constructive forces include crustal deformation, volcanic eruption, and deposition of sediment, while destructive forces include weathering and erosion.
- Some changes in the solid earth can be described as the "rock cycle." Old rocks at the earth's surface weather, forming sediments that are buried, then compacted, heated, and often recrystallized into new rock. Eventually, those new rocks may be brought to the surface by the forces that drive plate motions, and the rock cycle continues.

Earth's history

- The earth processes we see today, including erosion, movement of lithospheric plates, and changes in atmospheric composition, are similar to those that occurred in the past. earth history is also influenced by occasional catastrophes, such as the impact of an asteroid or comet.

Science in Personal and Social Perspectives

Natural hazards

- Internal and external processes of the earth system cause natural hazards, events that change or destroy human and wildlife habitats, damage property, and harm or kill humans. Natural hazards include earthquakes, landslides, wildfires, volcanic eruptions, floods, storms, and even possible impacts of asteroids.

Risks and benefits

- Students should understand the risks associated with natural hazards (fires, floods, tornadoes, hurricanes, earthquakes, and volcanic eruptions), with chemical hazards (pollutants in air, water, soil, and food), with biological hazards (pollen, viruses, bacterial, and parasites), social hazards (occupational safety and transportation), and with personal hazards (smoking, dieting, and drinking).

History and Nature of Science

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Formulate and revise scientific explanations and models using logic and evidence. Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Earth and Space Science

Energy in the earth system

- Earth systems have internal and external sources of energy, both of which create heat. The sun is the major external source of energy. Two primary sources of internal energy are the decay of radioactive isotopes and the gravitational energy from the earth's original formation.
- The outward transfer of earth's internal heat drives convection circulation in the mantle that propels the plates comprising earth's surface across the face of the globe. The origin and evolution of the earth system
 - Interactions among the solid earth, the oceans, the atmosphere, and organisms have resulted in the ongoing evolution of the earth system. We can observe some changes such as earthquakes and volcanic eruptions on a human time scale, but many processes such as mountain building and plate movements take place over hundreds of millions of years.

Science in Personal and Social Perspectives

Natural resources

- Human populations use resources in the environment in order to maintain and improve their existence. Natural resources have been and will continue to be used to maintain human populations.

Natural and human-induced hazards

- Some hazards, such as earthquakes, volcanic eruptions, and severe weather, are rapid and spectacular. But there are slow and progressive changes that also result in problems for individuals and societies. For example, change in stream channel position, erosion of bridge foundations, sedimentation in lakes and harbors, coastal erosions, and continuing erosion and wasting of soil and landscapes can all negatively affect society.

Earth's Seasons

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Use data to construct a reasonable explanation.
- Communicate investigations and explanations.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Position and motion of objects

- The position of an object can be described by locating it relative to another object or the background.
- An object's motion can be described by tracing and measuring its position over time.

Earth and Space Science

Objects in the sky

- The sun, moon, stars, clouds, birds, and airplanes all have properties, locations, and movements that can be observed and described.
- The sun provides the light and heat necessary to maintain the temperature of the earth.

Changes in the earth and sky

- Weather changes from day to day and over the seasons. Weather can be described by measurable quantities, such as temperature, wind direction and speed, and precipitation.
- Objects in the sky have patterns of movement. The sun, for example, appears to move across the sky in the same way every day, but its path changes slowly over the seasons. The moon moves across the sky on a daily basis much like the sun. The observable shape of the moon changes from day to day in a cycle that lasts about a month.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Develop descriptions, explanations, predictions, and models using evidence.
- Communicate scientific procedures and explanations.

Understandings about scientific inquiry

Different kinds of questions suggest different kinds of scientific investigations. Some
investigations involve observing and describing objects, organisms, or events; some
involve collecting specimens; some involve experiments; some involve seeking more
information; some involve discovery of new objects and phenomena; and some
involve making models.

- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Earth and Space Science

Earth in the solar system

- The earth is the third planet from the sun in a system that includes the moon, the sun, eight other planets and their moons, and smaller objects, such as asteroids and comets. The sun, an average star, is the central and largest body in the solar system.
- Most objects in the solar system are in regular and predictable motion. Those motions explain such phenomena as the day, the year, phases of the moon, and eclipses.
- The sun is the major source of energy for phenomena on the earth's surface, such as growth of plants, winds, ocean currents, and the water cycle. Seasons result from variations in the amount of the sun's energy hitting the surface, due to the tilt of the earth's rotation on its axis and the length of the day.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Earth and Space Science

Energy in the earth system

- Global climate is determined by energy transfer from the sun at and near the earth's surface. This energy transfer is influenced by dynamic processes such as cloud cover and the earth's rotation, and static conditions such as the position of mountain ranges and oceans.

Electrical Current

Grades K-4 Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Light, heat, electricity, and magnetism

- Electricity in circuits can produce light, heat, sound, and magnetic effects. Electrical circuits require a complete loop through which an electrical current can pass.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.

Science in Personal and Social Perspectives

Science and technology in local challenges

- People continue inventing new ways of doing things, solving problems, and getting work done. New ideas and inventions often affect other people; sometimes the effects are good and sometimes they are bad. It is helpful to try to determine in advance how ideas and inventions will affect other people.
- Science and technology have greatly improved food quality and quantity, transportation, health, sanitation, and communication. These benefits of science and technology are not available to all of the people in the world.

History and Nature of Science

- Science as a human endeavor
- Men and women have made a variety of contributions throughout the history of science and technology.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

Physical Science

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Electrical circuits provide a means of transferring electrical energy when heat, light, sound, and chemical changes are produced.
- In most chemical and nuclear reactions, energy is transferred into or out of a system. Heat, light, mechanical motion, or electricity might all be involved in such transfers.
- The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

 Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists. - Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Physical Science

Structure of atoms

- Matter is made of minute particles called atoms, and atoms are composed of even smaller components. These components have measurable properties, such as mass and electrical charge. Each atom has a positively charged nucleus surrounded by negatively charged electrons. The electric force between the nucleus and electrons holds the atom together.

Motions and forces

- Electricity and magnetism are two aspects of a single electromagnetic force. Moving electric charges produce magnetic forces, and moving magnets produce electric forces. These effects help students to understand electric motors and generators.

Interactions of energy and matter

- In some materials, such as metals, electrons flow easily, whereas in insulating materials such as glass they can hardly flow at all. Semiconducting materials have intermediate behavior. At low temperatures some materials become superconductors and offer no resistance to the flow of electrons.

Science and Technology

Understandings about science and technology

- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Energy

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Position and motion of objects

- Sound is produced by vibrating objects. The pitch of the sound can be varied by changing the rate of vibration.

Light, heat, electricity, and magnetism

- Heat can be produced in many ways, such as burning, rubbing, or mixing one substance with another. Heat can move from one object to another by conduction.
- Electricity in circuits can produce light, heat, sound, and magnetic effects. Electrical circuits require a complete loop through which an electrical current can pass.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.

Science in Personal and Social Perspectives

Science and technology in local challenges

- People continue inventing new ways of doing things, solving problems, and getting work done. New ideas and inventions often affect other people; sometimes the effects are good and sometimes they are bad. It is helpful to try to determine in advance how ideas and inventions will affect other people.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Men and women have made a variety of contributions throughout the history of science and technology.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Physical Science

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.
- Electrical circuits provide a means of transferring electrical energy when heat, light, sound, and chemical changes are produced.
- In most chemical and nuclear reactions, energy is transferred into or out of a system. Heat, light, mechanical motion, or electricity might all be involved in such transfers.
- The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.

Earth and Space Science

Earth in the solar system

- The sun is the major source of energy for phenomena on the earth's surface, such as growth of plants, winds, ocean currents, and the water cycle. Seasons result from variations in the amount of the sun's energy hitting the surface, due to the tilt of the earth's rotation on its axis and the length of the day.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Many different people in different cultures have made and continue to make contributions to science and technology.
- Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.

- Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.

Science in Personal and Social Perspectives

Personal Health

- Food provides energy and nutrients for growth and development. Nutrition requirements vary with body weight, age, sex, activity, and body functioning.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Physical Science

Structure of atoms

- Radioactive isotopes are unstable and undergo spontaneous nuclear reactions, emitting particles and/or wavelike radiation. The decay of any one nucleus cannot be predicted, but a large group of identical nuclei decay at a predictable rate. This predictability can be used to estimate the age of materials that contain radioactive isotopes.

Chemical reactions

- Chemical reactions occur all around us, for example in health care, cooking, cosmetics, and automobiles. Complex chemical reactions involving carbon-based molecules take place constantly in every cell in our bodies.
- Chemical reactions may release or consume energy. Some reactions such as the burning of fossil fuels release large amounts of energy by losing heat and by emitting light. Light can initiate many chemical reactions such as photosynthesis and the evolution of urban smog.

Motions and forces

- Gravitation is a universal force that each mass exerts on any other mass. The strength of the gravitational attractive force between two masses is proportional to the masses and inversely proportional to the square of the distance between them.
- Electricity and magnetism are two aspects of a single electromagnetic force. Moving electric charges produce magnetic forces, and moving magnets produce electric forces. These effects help students to understand electric motors and generators.

Conservation of energy and the increase in disorder

- The total energy of the universe is constant. Energy can be transferred by collisions in chemical and nuclear reactions, by light waves and other radiations, and in many other ways. However, it can never be destroyed. As these transfers occur, the matter involved becomes steadily less ordered.
- All energy can be considered to be either kinetic energy, which is the energy of motion; potential energy, which depends on relative position; or energy contained by a field, such as electromagnetic waves.

- Heat consists of random motion and the vibrations of atoms, molecules, and ions. The higher the temperature, the greater the atomic or molecular motion.

Interactions of energy and matter

- In some materials, such as metals, electrons flow easily, whereas in insulating materials such as glass they can hardly flow at all. Semiconducting materials have intermediate behavior. At low temperatures some materials become superconductors and offer no resistance to the flow of electrons.

Life Science

Matter, energy, and organization in living systems

- The energy for life primarily derives from the sun. Plants capture energy by absorbing light and using it to form strong (covalent) chemical bonds between the atoms of carbon-containing (organic) molecules. These molecules can be used to assemble larger molecules with biological activity (including proteins, DNA, sugars, and fats). In addition, the energy stored in bonds between the atoms (chemical energy) can be used as sources of energy for life processes.

Earth and Space Science

Energy in the earth system

- Earth systems have internal and external sources of energy, both of which create heat. The sun is the major external source of energy. Two primary sources of internal energy are the decay of radioactive isotopes and the gravitational energy from the earth's original formation.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Erosion

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

- Soils have properties of color and texture, capacity to retain water, and ability to support the growth of many kinds of plants, including those in our food supply. Changes in the earth and sky

 The surface of the earth changes. Some changes are due to slow processes, such as erosion and weathering, and some changes are due to rapid processes, such as landslides, volcanic eruptions, and earthquakes.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of

substances often can be separated into the original substances using one or more of the characteristic properties.

- Substances react chemically in characteristic ways with other substances to form new substances (compounds) with different characteristic properties. In chemical reactions, the total mass is conserved. Substances often are placed in categories or groups if they react in similar ways; metals is an example of such a group.

Earth and Space Science

Structure of the earth system

- Land forms are the result of a combination of constructive and destructive forces. Constructive forces include crustal deformation, volcanic eruption, and deposition of sediment, while destructive forces include weathering and erosion.
- Soil consists of weathered rocks and decomposed organic material from dead plants, animals, and bacteria. Soils are often found in layers, with each having a different chemical composition and texture.
- Water, which covers the majority of the earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the "water cycle." Water evaporates from the earth's surface, rises and cools as it moves to higher elevations, condenses as rain or snow, and falls to the surface where it collects in lakes, oceans, soil, and in rocks underground.
- Water is a solvent. As it passes through the water cycle it dissolves minerals and gases and carries them to the oceans.
- Living organisms have played many roles in the earth system, including affecting the composition of the atmosphere, producing some types of rocks, and contributing to the weathering of rocks.

History and Nature of Science

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to questions and possible modification; and it must be based on historical and current scientific knowledge.

Physical Science

Chemical reactions

- Chemical reactions occur all around us, for example in health care, cooking, cosmetics, and automobiles. Complex chemical reactions involving carbon-based molecules take place constantly in every cell in our bodies.
- Chemical reactions can take place in time periods ranging from the few femtoseconds (10-15 seconds) required for an atom to move a fraction of a chemical bond distance to geologic time scales of billions of years. Reaction rates depend on how often the reacting atoms and molecules encounter one another, on the temperature, and on the properties—including shape—of the reacting species.

Interactions of energy and matter

Waves, including sound and seismic waves, waves on water, and light waves, have energy and can transfer energy when they interact with matter.

Earth and Space Science

Geochemical cycles

- Movement of matter between reservoirs is driven by the earth's internal and external sources of energy. These movements are often accompanied by a change in the physical and chemical properties of the matter. Carbon, for example, occurs in carbonate rocks such as limestone, in the atmosphere as carbon dioxide gas, in water as dissolved carbon dioxide, and in all organisms as complex molecules that control the chemistry of life.

Science and Technology

Understandings about science and technology

 Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.

Science in Personal and Social Perspectives

Environmental quality

- Natural ecosystems provide an array of basic processes that affect humans. Those processes include maintenance of the quality of the atmosphere, generation of soils, control of the hydrologic cycle, disposal of wastes, and recycling of nutrients. Humans are changing many of these basic processes, and the changes may be detrimental to humans.

Evolution

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Life Science

Life cycles of organisms

- Plants and animals closely resemble their parents.

Organisms and their environments

- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.
- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.
- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Earth and Space Science

Properties of earth materials

Fossils provide evidence about the plants and animals that lived long ago and the nature of the environment at that time.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.

History and Nature of Science

Science as a human endeavor

- Men and women have made a variety of contributions throughout the history of science and technology.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Life Science

Reproduction and heredity

- Reproduction is a characteristic of all living systems; because no individual organism lives forever, reproduction is essential to the continuation of every species. Some organisms reproduce asexually. Other organisms reproduce sexually.
- In many species, including humans, females produce eggs and males produce sperm. Plants also reproduce sexually—the egg and sperm are produced in the flowers of flowering plants. An egg and sperm unite to begin development of a new individual. That new individual receives genetic information from its mother (via the egg) and its father (via the sperm). Sexually produced offspring never are identical to either of their parents.
- Every organism requires a set of instructions for specifying its traits. Heredity is the passage of these instructions from one generation to another.
- Hereditary information is contained in genes, located in the chromosomes of each cell. Each gene carries a single unit of information. An inherited trait of an individual can be determined by one or by many genes, and a single gene can influence more than one trait. A human cell contains many thousands of different genes.
- The characteristics of an organism can be described in terms of a combination of traits. Some traits are inherited and others result from interactions with the environment.

Regulation and behavior

- Regulation of an organism's internal environment involves sensing the internal environment and changing physiological activities to keep conditions within the range required to survive.
- Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Diversity and adaptations of organisms

- Millions of species of animals, plants, and microorganisms are alive today. Although different species might look dissimilar, the unity among organisms becomes apparent from an analysis of internal structures, the similarity of their chemical processes, and the evidence of common ancestry.
- Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes

in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

- Extinction of a species occurs when the environment changes and the adaptive characteristics of a species are insufficient to allow its survival. Fossils indicate that many organisms that lived long ago are extinct. Extinction of species is common; most of the species that have lived on the earth no longer exist.

Earth and Space Science

Earth's history

- Fossils provide important evidence of how life and environmental conditions have changed.

History and Nature of Science

History of science

- Many individuals have contributed to the traditions of science. Studying some of these individuals provides further understanding of scientific inquiry, science as a human endeavor, the nature of science, and the relationships between science and society.
- Tracing the history of science can show how difficult it was for scientific innovators to break through the accepted ideas of their time to reach the conclusions that we currently take for granted.

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.

Life Science

Molecular basis of heredity

- In all organisms, the instructions for specifying the characteristics of the organism are carried in DNA, a large polymer formed from subunits of four kinds (A, G, C, and T). The chemical and structural properties of DNA explain how the genetic information that underlies heredity is both encoded in genes (as a string of molecular "letters") and replicated (by a templating mechanism). Each DNA molecule in a cell forms a single chromosome.
- Most of the cells in a human contain two copies of each of 22 different chromosomes. In addition, there is a pair of chromosomes that determines sex: a female contains two X chromosomes and a male contains one X and one Y

chromosome. Transmission of genetic information to offspring occurs through egg and sperm cells that contain only one representative from each chromosome pair. An egg and a sperm unite to form a new individual. The fact that the human body is formed from cells that contain two copies of each chromosome—and therefore two copies of each gene—explains many features of human heredity, such as how variations that are hidden in one generation can be expressed in the next.

- Changes in DNA (mutations) occur spontaneously at low rates. Some of these changes make no difference to the organism, whereas others can change cells and organisms. Only mutations in germ cells can create the variation that changes an organism's offspring.

Biological evolution

- Species evolve over time. Evolution is the consequence of the interactions of (1) the potential for a species to increase its numbers, (2) the genetic variability of offspring due to mutation and recombination of genes, (3) a finite supply of the resources required for life, and (4) the ensuing selection by the environment of those offspring better able to survive and leave offspring.
- The great diversity of organisms is the result of more than 3.5 billion years of evolution that has filled every available niche with life forms.
- Natural selection and its evolutionary consequences provide a scientific explanation for the fossil record of ancient life forms, as well as for the striking molecular similarities observed among the diverse species of living organisms.
- The millions of different species of plants, animals, and microorganisms that live on earth today are related by descent from common ancestors.
- Biological classifications are based on how organisms are related. Organisms are classified into a hierarchy of groups and subgroups based on similarities which reflect their evolutionary relationships. Species is the most fundamental unit of classification.

Behavior of organisms

- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change. Plants also respond to stimuli.
- Like other aspects of an organism's biology, behaviors have evolved through natural selection. Behaviors often have an adaptive logic when viewed in terms of evolutionary principles.

Science and Technology

Understandings about science and technology

 Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.

Science in Personal and Social Perspectives

- Science and technology in local, national, and global challenges
 - Humans have a major effect on other species. For example, the influence of humans on other organisms occurs through land use—which decreases space available to other species—and pollution—which changes the chemical composition of air, soil, and water.

History and Nature of Science

Historical perspectives

- Occasionally, there are advances in science and technology that have important and long-lasting effects on science and society. Examples of such advances include the following: Copernican revolution, Newtonian mechanics, relativity, geologic time scale, plate tectonics, atomic theory, nuclear physics, biological evolution, germ theory, Industrial revolution, molecular biology, information and communication, quantum theory, galactic universe, medical and health technology.
- The historical perspective of scientific explanations demonstrates how scientific knowledge changes by evolving over time, almost always building on earlier knowledge.

Science as a human endeavor

Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Eyeball

Grades K-4

Physical Science

Position and motion of objects

- The position of an object can be described by locating it relative to another object or the background.
- Light, heat, electricity, and magnetism
- Light travels in a straight line until it strikes an object. Light can be reflected by a mirror, refracted by a lens, or absorbed by the object.

Life Science

The characteristics of organisms

- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

Science and Technology

Abilities of technological design

- Identify a simple problem.
- Propose a solution.
- Implementing proposed solutions.
- Evaluate a product or design.
- Communicate a problem, design, and solution.

Understandings about science and technology

- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Grades 5-8

Physical Science

Transfer of energy

- Light interacts with matter by transmission (including refraction), absorption, or scattering (including reflection). To see an object, light from that object—emitted by or scattered from it—must enter the eye.

Life Science

Regulation and behavior

- Regulation of an organism's internal environment involves sensing the internal environment and changing physiological activities to keep conditions within the range required to survive.
- Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.

Science and Technology

Abilities of technological design

- Identify appropriate problems for technological design.
- Design a solution or product.
- Implement a proposed design.
- Evaluate completed technological designs or products.
- Communicate the process of technological design.

Understandings about science and technology

 Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.

Grades 9-12

Life Science

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.

Farming

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.
- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.
- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.
- Soils have properties of color and texture, capacity to retain water, and ability to support the growth of many kinds of plants, including those in our food supply.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.

- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.

Science in Personal and Social Perspectives

Personal health

- Nutrition is essential to health. Students should understand how the body uses food and how various foods contribute to health. Recommendations for good nutrition include eating a variety of foods, eating less sugar, and eating less fat.

Types of resources

- Resources are things that we get from the living and nonliving environment to meet the needs and wants of a population.
- Some resources are basic materials, such as air, water, and soil; some are produced from basic resources, such as food, fuel, and building materials; and some resources are nonmaterial, such as quiet places, beauty, security, and safety.

Science and technology in local challenges

- Science and technology have greatly improved food quality and quantity, transportation, health, sanitation, and communication. These benefits of science and technology are not available to all of the people in the world.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Men and women have made a variety of contributions throughout the history of science and technology.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Life Science

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.
- The number of organisms an ecosystem can support depends on the resources available and abiotic factors, such as quantity of light and water, range of temperatures, and soil composition. Given adequate biotic and abiotic resources and no disease or predators, populations (including humans) increase at rapid rates. Lack of resources and other factors, such as predation and climate, limit the growth of populations in specific niches in the ecosystem.

Earth and Space Science

Structure of the earth system

- Soil consists of weathered rocks and decomposed organic material from dead plants, animals, and bacteria. Soils are often found in layers, with each having a different chemical composition and texture.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Many different people in different cultures have made and continue to make contributions to science and technology.
- Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.

Science in Personal and Social Perspectives

Personal health

- Food provides energy and nutrients for growth and development. Nutrition requirements vary with body weight, age, sex, activity, and body functioning.

Science and technology in society

- Societal challenges often inspire questions for scientific research, and social priorities often influence research priorities through the availability of funding for research.
- Technology influences society through its products and processes. Technology influences the quality of life and the ways people act and interact. Technological changes are often accompanied by social, political, and economic changes that can be beneficial or detrimental to individuals and to society. Social needs, attitudes, and values influence the direction of technological development.
- Science and technology have advanced through contributions of many different people, in different cultures, at different times in history. Science and technology have contributed enormously to economic growth and productivity among societies and groups within societies.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.

Understandings about scientific inquiry

 Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.

Life Science

Interdependence of organisms

- Human beings live within the world's ecosystems. Increasingly, humans modify ecosystems as a result of population growth, technology, and consumption. Human destruction of habitats through direct harvesting, pollution, atmospheric changes, and other factors is threatening current global stability, and if not addressed, ecosystems will be irreversibly affected.

Matter, energy, and organization in living systems

- The energy for life primarily derives from the sun. Plants capture energy by absorbing light and using it to form strong (covalent) chemical bonds between the atoms of carbon-containing (organic) molecules. These molecules can be used to assemble larger molecules with biological activity (including proteins, DNA, sugars, and fats). In addition, the energy stored in bonds between the atoms (chemical energy) can be used as sources of energy for life processes.
- The chemical bonds of food molecules contain energy. Energy is released when the bonds of food molecules are broken and new compounds with lower energy bonds are formed. Cells usually store this energy temporarily in phosphate bonds of a small high-energy compound called ATP.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

Science in Personal and Social Perspectives

Personal and community health

- Selection of foods and eating patterns determine nutritional balance. Nutritional balance has a direct effect on growth and development and personal well-being. Personal and social factors—such as habits, family income, ethnic heritage, body size, advertising, and peer pressure—influence nutritional choices.

Natural resources

- Human populations use resources in the environment in order to maintain and improve their existence. Natural resources have been and will continue to be used to maintain human populations.
- The earth does not have infinite resources; increasing human consumption places severe stress on the natural processes that renew some resources, and it depletes those resources that cannot be renewed.

- Humans use many natural systems as resources. Natural systems have the capacity to reuse waste, but that capacity is limited. Natural systems can change to an extent that exceeds the limits of organisms to adapt naturally or humans to adapt technologically.

Environmental quality

- Natural ecosystems provide an array of basic processes that affect humans. Those processes include maintenance of the quality of the atmosphere, generation of soils, control of the hydrologic cycle, disposal of wastes, and recycling of nutrients. Humans are changing many of these basic processes, and the changes may be detrimental to humans.

Science and technology in local, national, and global challenges

- Humans have a major effect on other species. For example, the influence of humans on other organisms occurs through land use—which decreases space available to other species—and pollution—which changes the chemical composition of air, soil, and water.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Fish

Grades K-4

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Life cycles of organisms

- Plants and animals have life cycles that include being born, developing into adults, reproducing, and eventually dying. The details of this life cycle are different for different organisms.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.
- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.
- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.
- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Science in Personal and Social Perspectives

Changes in environments

- Changes in environments can be natural or influenced by humans. Some changes are good, some are bad, and some are neither good nor bad. Pollution is a change in the environment that can influence the health, survival, or activities of organisms, including humans.

History and Nature of Science

Science as a human endeavor

Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Understandings about scientific inquiry

- Mathematics is important in all aspects of scientific inquiry.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Life Science

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.
- Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Diversity and adaptations of organisms

- Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

Earth and Space Science

Structure of the earth system

- Water is a solvent. As it passes through the water cycle it dissolves minerals and gases and carries them to the oceans.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Understandings about scientific inquiry

- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Life Science

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell

extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.

- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Flight

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Communicate investigations and explanations.

Understandings about scientific inquiry

- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Position and motion of objects

- The position and motion of objects can be changed by pushing or pulling. The size of the change is related to the strength of the push or pull.

Earth and Space Science

Objects in the sky

- The sun, moon, stars, clouds, birds, and airplanes all have properties, locations, and movements that can be observed and described.

Science and Technology

Abilities of technological design

- Identify a simple problem.
- Propose a solution.
- Implementing proposed solutions.
- Evaluate a product or design.
- Communicate a problem, design, and solution.

Understanding about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Develop descriptions, explanations, predictions, and models using evidence.
- Communicate scientific procedures and explanations.
- Use mathematics in all aspects of scientific inquiry.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Mathematics is important in all aspects of scientific inquiry.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Physical Science

Motions and forces

The motion of an object can be described by its position, direction of motion, and speed. That motion can be measured and represented on a graph.

Science and Technology

Abilities of technological design

- Identify appropriate problems for technological design.
- Design a solution or product.
- Implement a proposed design.
- Evaluate completed technological designs or products.
- Communicate the process of technological design.

Understandings about science and technology

Scientific inquiry and technological design have similarities and differences.
 Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

- Use technology and mathematics to improve investigations and communications. Understandings about scientific inquiry

- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Physical Science

Motions and forces

- Objects change their motion only when a net force is applied. Laws of motion are used to calculate precisely the effects of forces on the motion of objects. The magnitude of the change in motion can be calculated using the relationship F = ma, which is independent of the nature of the force. Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object.

Science and Technology

Abilities of technological design

- Identify a problem or design an opportunity.
- Implement a proposed solution.
- Communicate the problem, process, and solution.

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

Flowers

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Life cycles of organisms

- Plants and animals have life cycles that include being born, developing into adults, reproducing, and eventually dying. The details of this life cycle are different for different organisms.
- Plants and animals closely resemble their parents.
- Many characteristics of an organism are inherited from the parents of the organism, but other characteristics result from an individual's interactions with the environment. Inherited characteristics include the color of flowers and the number of limbs of an animal. Other features, such as the ability to ride a bicycle, are learned through interactions with the environment and cannot be passed on to the next generation.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.
- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.

- Design and conduct a scientific investigation.
- Understandings about scientific inquiry
 - Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Physical Science

Transfer of energy

- The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.

Life Science

Reproduction and heredity

- Reproduction is a characteristic of all living systems; because no individual organism lives forever, reproduction is essential to the continuation of every species. Some organisms reproduce asexually. Other organisms reproduce sexually.
- In many species, including humans, females produce eggs and males produce sperm. Plants also reproduce sexually—the egg and sperm are produced in the flowers of flowering plants. An egg and sperm unite to begin development of a new individual. That new individual receives genetic information from its mother (via the egg) and its father (via the sperm). Sexually produced offspring never are identical to either of their parents.
- Every organism requires a set of instructions for specifying its traits. Heredity is the passage of these instructions from one generation to another.
- The characteristics of an organism can be described in terms of a combination of traits. Some traits are inherited and others result from interactions with the environment.

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.

Life Science

Interdependence of organisms

- Organisms both cooperate and compete in ecosystems. The interrelationships and interdependencies of these organisms may generate ecosystems that are stable for hundreds or thousands of years.

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.
- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change. Plants also respond to stimuli.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Fluids

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.
- Materials can exist in different states—solid, liquid, and gas. Some common materials, such as water, can be changed from one state to another by heating or cooling.

Earth and Space Science

Properties of earth materials

Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct a scientific investigation.
- Develop descriptions, explanations, predictions, and models using evidence.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

Transfer of energy

- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.

Earth and Space Science

Structure of the earth system

- The solid earth is layered with a lithosphere; hot, convecting mantle; and dense, metallic core.
- Lithospheric plates on the scales of continents and oceans constantly move at rates of centimeters per year in response to movements in the mantle. Major geological

events, such as earthquakes, volcanic eruptions, and mountain building, result from these plate motions.

- Water, which covers the majority of the earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the "water cycle." Water evaporates from the earth's surface, rises and cools as it moves to higher elevations, condenses as rain or snow, and falls to the surface where it collects in lakes, oceans, soil, and in rocks underground.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct scientific investigations.
- Formulate and revise scientific explanations and models using logic and evidence.

Physical Science

Structure and properties of matter

- Bonds between atoms are created when electrons are paired up by being transferred or shared. A substance composed of a single kind of atom is called an element. The atoms may be bonded together into molecules or crystalline solids. A compound is formed when two or more kinds of atoms bind together chemically.
- The physical properties of compounds reflect the nature of the interactions among its molecules. These interactions are determined by the structure of the molecule, including the constituent atoms and the distances and angles between them.
- Solids, liquids, and gases differ in the distances and angles between molecules or atoms and therefore the energy that binds them together. In solids the structure is nearly rigid; in liquids molecules or atoms move around each other but do not move apart; and in gases molecules or atoms move almost independently of each other and are mostly far apart.

Conservation of energy and the increase in disorder

- Heat consists of random motion and the vibrations of atoms, molecules, and ions. The higher the temperature, the greater the atomic or molecular motion.
- Everything tends to become less organized and less orderly over time. Thus, in all energy transfers, the overall effect is that the energy is spread out uniformly. Examples are the transfer of energy from hotter to cooler objects by conduction, radiation, or convection and the warming of our surroundings when we burn fuels.

Earth and Space Science

Energy in the earth system

- The outward transfer of earth's internal heat drives convection circulation in the mantle that propels the plates comprising earth's surface across the face of the globe.
- Heating of earth's surface and atmosphere by the sun drives convection within the atmosphere and oceans, producing winds and ocean currents.

Food Web

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Life Science

The characteristics of organisms

Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.
- Soils have properties of color and texture, capacity to retain water, and ability to support the growth of many kinds of plants, including those in our food supply.

Objects in the sky

- The sun provides the light and heat necessary to maintain the temperature of the earth.

Science in Personal and Social Perspectives

Personal health

- Nutrition is essential to health. Students should understand how the body uses food and how various foods contribute to health. Recommendations for good nutrition include eating a variety of foods, eating less sugar, and eating less fat.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Life Science

Populations and ecosystems

 Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.

- For ecosystems, the major source of energy is sunlight. Energy entering ecosystems as sunlight is transferred by producers into chemical energy through photosynthesis. That energy then passes from organism to organism in food webs.

Earth and Space Science

Structure of the earth system

- Soil consists of weathered rocks and decomposed organic material from dead plants, animals, and bacteria. Soils are often found in layers, with each having a different chemical composition and texture.

Science in Personal and Social Perspectives

Personal health

- Food provides energy and nutrients for growth and development. Nutrition requirements vary with body weight, age, sex, activity, and body functioning.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.
- Use technology and mathematics to improve investigations and communications.

Physical Science

Chemical Reactions

- Chemical reactions may release or consume energy. Some reactions such as the burning of fossil fuels release large amounts of energy by losing heat and by emitting light. Light can initiate many chemical reactions such as photosynthesis and the evolution of urban smog.

Life Science

Interdependence of organisms

- Energy flows through ecosystems in one direction, from photosynthetic organisms to herbivores to carnivores and decomposers.

Matter, energy, and organization in living systems

- All matter tends toward more disorganized states. Living systems require a continuous input of energy to maintain their chemical and physical organizations. With death, and the cessation of energy input, living systems rapidly disintegrate.

- The energy for life primarily derives from the sun. Plants capture energy by absorbing light and using it to form strong (covalent) chemical bonds between the atoms of carbon-containing (organic) molecules. These molecules can be used to assemble larger molecules with biological activity (including proteins, DNA, sugars, and fats). In addition, the energy stored in bonds between the atoms (chemical energy) can be used as sources of energy for life processes.
- The chemical bonds of food molecules contain energy. Energy is released when the bonds of food molecules are broken and new compounds with lower energy bonds are formed. Cells usually store this energy temporarily in phosphate bonds of a small high-energy compound called ATP.
- The complexity and organization of organisms accommodates the need for obtaining, transforming, transporting, releasing, and eliminating the matter and energy used to sustain the organism.
- The distribution and abundance of organisms and populations in ecosystems are limited by the availability of matter and energy and the ability of the ecosystem to recycle materials.
- As matter and energy flows through different levels of organization of living systems—cells, organs, organisms, communities—and between living systems and the physical environment, chemical elements are recombined in different ways. Each recombination results in storage and dissipation of energy into the environment as heat. Matter and energy are conserved in each change.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Forensics

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.
- Communicate investigations and explanations.

Understandings about scientific inquiry

- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.
- Scientists review and ask questions about the results of other scientists' work.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.
- Think critically and logically to make the relationships between evidence and explanations.
- Recognize and analyze alternative explanations and predictions.
- Communicate scientific procedures and explanations.
- Use mathematics in all aspects of scientific inquiry.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Life Science

Reproduction and heredity

- In many species, including humans, females produce eggs and males produce sperm. Plants also reproduce sexually—the egg and sperm are produced in the flowers of flowering plants. An egg and sperm unite to begin development of a new individual. That new individual receives genetic information from its mother (via the egg) and its father (via the sperm). Sexually produced offspring never are identical to either of their parents.
- Every organism requires a set of instructions for specifying its traits. Heredity is the passage of these instructions from one generation to another.
- Hereditary information is contained in genes, located in the chromosomes of each cell. Each gene carries a single unit of information. An inherited trait of an individual can be determined by one or by many genes, and a single gene can influence more than one trait. A human cell contains many thousands of different genes.
- The characteristics of an organism can be described in terms of a combination of traits. Some traits are inherited and others result from interactions with the environment.

Science and Technology

Understandings about science and technology

- Many different people in different cultures have made and continue to make contributions to science and technology.

Science in Personal and Social Perspectives

Science and technology in society

- Societal challenges often inspire questions for scientific research, and social priorities often influence research priorities through the availability of funding for research.
- Technology influences society through its products and processes. Technology influences the quality of life and the ways people act and interact. Technological changes are often accompanied by social, political, and economic changes that can be beneficial or detrimental to individuals and to society. Social needs, attitudes, and values influence the direction of technological development.
- Science and technology have advanced through contributions of many different people, in different cultures, at different times in history. Science and technology have contributed enormously to economic growth and productivity among societies and groups within societies.
- Scientists and engineers work in many different settings, including colleges and universities, businesses and industries, specific research institutes, and government agencies.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.
- Use technology and mathematics to improve investigations and communications.

- Formulate and revise scientific explanations and models using logic and evidence.
- Recognize and analyze alternative explanations and models.

Understandings about scientific inquiry

- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Results of scientific inquiry—new knowledge and methods—emerge from different types of investigations and public communication among scientists. In communicating and defending the results of scientific inquiry, arguments must be logical and demonstrate connections between natural phenomena, investigations, and the historical body of scientific knowledge. In addition, the methods and procedures that scientists used to obtain evidence must be clearly reported to enhance opportunities for further investigation.

Life Science

The cell

- Cells store and use information to guide their functions. The genetic information stored in DNA is used to direct the synthesis of the thousands of proteins that each cell requires.

Molecular basis of heredity

- In all organisms, the instructions for specifying the characteristics of the organism are carried in DNA, a large polymer formed from subunits of four kinds (A, G, C, and T). The chemical and structural properties of DNA explain how the genetic information that underlies heredity is both encoded in genes (as a string of molecular "letters") and replicated (by a templating mechanism). Each DNA molecule in a cell forms a single chromosome.

Science and Technology

Understandings about science and technology

- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

History and Nature of Science

Science as a human endeavor

- Scientists are influenced by societal, cultural, and personal beliefs and ways of viewing the world. Science is not separate from society but rather science is a part of society.

Forests

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.
- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Earth and Space Science

Properties of earth materials

Soils have properties of color and texture, capacity to retain water, and ability to support the growth of many kinds of plants, including those in our food supply.

Science in Personal and Social Perspectives

Types of resources

- Resources are things that we get from the living and nonliving environment to meet the needs and wants of a population.
- Some resources are basic materials, such as air, water, and soil; some are produced from basic resources, such as food, fuel, and building materials; and some resources are nonmaterial, such as quiet places, beauty, security, and safety.

Changes in environments

- Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.
- Changes in environments can be natural or influenced by humans. Some changes are good, some are bad, and some are neither good nor bad. Pollution is a change in the environment that can influence the health, survival, or activities of organisms, including humans.
- Some environmental changes occur slowly, and others occur rapidly. Students should understand the different consequences of changing environments in small increments over long periods as compared with changing environments in large increments over short periods.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

- Use appropriate tools and techniques to gather, analyze, and interpret data.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.
- Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.
- For ecosystems, the major source of energy is sunlight. Energy entering ecosystems as sunlight is transferred by producers into chemical energy through photosynthesis. That energy then passes from organism to organism in food webs.
- The number of organisms an ecosystem can support depends on the resources available and abiotic factors, such as quantity of light and water, range of temperatures, and soil composition. Given adequate biotic and abiotic resources and no disease or predators, populations (including humans) increase at rapid rates. Lack of resources and other factors, such as predation and climate, limit the growth of populations in specific niches in the ecosystem.

Diversity and adaptations of organisms

 Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment. Earth and Space Science

Structure of the earth system

- The atmosphere is a mixture of nitrogen, oxygen, and trace gases that include water vapor. The atmosphere has different properties at different elevations.
- Soil consists of weathered rocks and decomposed organic material from dead plants, animals, and bacteria. Soils are often found in layers, with each having a different chemical composition and texture.

Science in Personal and Social Perspectives

Natural hazards

- Human activities also can induce hazards through resource acquisition, urban growth, land-use decisions, and waste disposal. Such activities can accelerate many natural changes.

Risks and benefits

- Students should understand the risks associated with natural hazards (fires, floods, tornadoes, hurricanes, earthquakes, and volcanic eruptions), with chemical hazards (pollutants in air, water, soil, and food), with biological hazards (pollen, viruses, bacterial, and parasites), social hazards (occupational safety and transportation), and with personal hazards (smoking, dieting, and drinking).

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Life Science

Interdependence of organisms

- The atoms and molecules on the earth cycle among the living and nonliving components of the biosphere.
- Energy flows through ecosystems in one direction, from photosynthetic organisms to herbivores to carnivores and decomposers.
- Organisms both cooperate and compete in ecosystems. The interrelationships and interdependencies of these organisms may generate ecosystems that are stable for hundreds or thousands of years.
- Living organisms have the capacity to produce populations of infinite size, but environments and resources are finite. This fundamental tension has profound effects on the interactions between organisms.
- Human beings live within the world's ecosystems. Increasingly, humans modify ecosystems as a result of population growth, technology, and consumption. Human destruction of habitats through direct harvesting, pollution, atmospheric changes, and other factors is threatening current global stability, and if not addressed, ecosystems will be irreversibly affected.

Matter, energy, and organization in living systems

- The complexity and organization of organisms accommodates the need for obtaining, transforming, transporting, releasing, and eliminating the matter and energy used to sustain the organism.
- The distribution and abundance of organisms and populations in ecosystems are limited by the availability of matter and energy and the ability of the ecosystem to recycle materials.
- As matter and energy flows through different levels of organization of living systems—cells, organs, organisms, communities—and between living systems and the physical environment, chemical elements are recombined in different ways. Each recombination results in storage and dissipation of energy into the environment as heat. Matter and energy are conserved in each change.

Science in Personal and Social Perspectives

Natural resources

- Human populations use resources in the environment in order to maintain and improve their existence. Natural resources have been and will continue to be used to maintain human populations.
- Humans use many natural systems as resources. Natural systems have the capacity to reuse waste, but that capacity is limited. Natural systems can change to an extent that exceeds the limits of organisms to adapt naturally or humans to adapt technologically.

Natural and human-induced hazards

- Normal adjustments of earth may be hazardous for humans. Humans live at the interface between the atmosphere driven by solar energy and the upper mantle where convection creates changes in the earth's solid crust. As societies have grown, become stable, and come to value aspects of the environment, vulnerability to natural processes of change has increased.
- Human activities can enhance potential for hazards. Acquisition of resources, urban growth, and waste disposal can accelerate rates of natural change.
- Some hazards, such as earthquakes, volcanic eruptions, and severe weather, are rapid and spectacular. But there are slow and progressive changes that also result in problems for individuals and societies. For example, change in stream channel position, erosion of bridge foundations, sedimentation in lakes and harbors, coastal erosions, and continuing erosion and wasting of soil and landscapes can all negatively affect society.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Fossils

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Earth and Space Science

Properties of earth materials

- Fossils provide evidence about the plants and animals that lived long ago and the nature of the environment at that time.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Science in Personal and Social Perspectives

Changes in environments

- Some environmental changes occur slowly, and others occur rapidly. Students should understand the different consequences of changing environments in small increments over long periods as compared with changing environments in large increments over short periods.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Men and women have made a variety of contributions throughout the history of science and technology.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Life Science

Diversity and adaptations of organisms

 Éxtinction of a species occurs when the environment changes and the adaptive characteristics of a species are insufficient to allow its survival. Fossils indicate that many organisms that lived long ago are extinct. Extinction of species is common; most of the species that have lived on the earth no longer exist.

Earth and Space Science

Structure of the earth system

- Living organisms have played many roles in the earth system, including affecting the composition of the atmosphere, producing some types of rocks, and contributing to the weathering of rocks.

Earth's history

- The earth processes we see today, including erosion, movement of lithospheric plates, and changes in atmospheric composition, are similar to those that occurred in the past. Earth history is also influenced by occasional catastrophes, such as the impact of an asteroid or comet.
- Fossils provide important evidence of how life and environmental condition have changed.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Many different people in different cultures have made and continue to make contributions to science and technology.
- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity,

distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.

Science in Personal and Social Perspectives

Science and technology in society

- Science influences society through its knowledge and world view. Scientific knowledge and the procedures used by scientists influence the way many individuals in society think about themselves, others, and the environment. The effect of science on society is neither entirely beneficial nor entirely detrimental.
- Scientists and engineers work in many different settings, including colleges and universities, businesses and industries, specific research institutes, and government agencies.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to

questions and possible modification; and it must be based on historical and current scientific knowledge.

Physical Science

Structure of atoms

- Radioactive isotopes are unstable and undergo spontaneous nuclear reactions, emitting particles and/or wavelike radiation. The decay of any one nucleus cannot be predicted, but a large group of identical nuclei decay at a predictable rate. This predictability can be used to estimate the age of materials that contain radioactive isotopes.

Structure and properties of matter

- Carbon atoms can bond to one another in chains, rings, and branching networks to form a variety of structures, including synthetic polymers, oils, and the large molecules essential to life.

Life Science

Biological evolution

- The millions of different species of plants, animals, and microorganisms that live on earth today are related by descent from common ancestors.

Earth and Space Science

The origin and evolution of the earth system

- Geologic time can be estimated by observing rock sequences and using fossils to correlate the sequences at various locations. Current methods include using the known decay rates of radioactive isotopes present in rocks to measure the time since the rock was formed.

Science and Technology

Understandings about science and technology

 Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Historical perspectives

 Usually, changes in science occur as small modifications in extant knowledge. The daily work of science and engineering results in incremental advances in our understanding of the world and our ability to meet human needs and aspirations. Much can be learned about the internal workings of science and the nature of science from study of individual scientists, their daily work, and their efforts to advance scientific knowledge in their area of study.

Friction

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.

Light, heat, electricity, and magnetism

- Heat can be produced in many ways, such as burning, rubbing, or mixing one substance with another. Heat can move from one object to another by conduction.

Life Science

The characteristics of organisms

- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

Science and Technology

Abilities of technological design

- Identify a simple problem.
- Implementing proposed solutions.
- Communicate a problem, design, and solution.

Understandings about science and technology

- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Develop descriptions, explanations, predictions, and models using evidence.
- Communicate scientific procedures and explanations.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

Motions and forces

- An object that is not being subjected to a force will continue to move at a constant speed and in a straight line.
- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.

Life Science

Regulation and behavior

- Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Science and Technology

Abilities of technological design

- Design a solution or product.
- Implement a proposed design.
- Communicate the process of technological design.

Understandings about science and technology

 Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.

Grades 9-12

Life Science

Behavior of organisms

- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change. Plants also respond to stimuli.

Science and Technology

Abilities of technological design

- Identify a problem or design an opportunity.
- Implement a proposed solution.
- Communicate the problem, process, and solution.

Understandings about science and technology

- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.

Garbage

Grades K-4

Life Science

Organisms and their environments

- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.
- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Science and Technology

Abilities to distinguish between natural objects and objects made by humans

- Some objects occur in nature; others have been designed and made by people to solve human problems and enhance the quality of life.
- Objects can be categorized into two groups, natural and designed.

Science in Personal and Social Perspectives

Types of resources

- The supply of many resources is limited. If used, resources can be extended through recycling and decreased use.

Changes in environments

- Changes in environments can be natural or influenced by humans. Some changes are good, some are bad, and some are neither good nor bad. Pollution is a change in the environment that can influence the health, survival, or activities of organisms, including humans.
- Some environmental changes occur slowly, and others occur rapidly. Students should understand the different consequences of changing environments in small increments over long periods as compared with changing environments in large increments over short periods.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Life Science

Populations and ecosystems

Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.

Science and Technology

Understandings about science and technology

Scientific inquiry and technological design have similarities and differences.
 Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot

contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.

- Perfectly designed solutions do not exist. All technological solutions have trade-offs, such as safety, cost, efficiency, and appearance. Engineers often build in back-up systems to provide safety. Risk is part of living in a highly technological world. Reducing risk often results in new technology.
- Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.

Science in Personal and Social Perspectives

Populations, resources, and environments

- Causes of environmental degradation and resource depletion vary from region to region and from country to country.

Natural hazards

- Human activities also can induce hazards through resource acquisition, urban growth, land-use decisions, and waste disposal. Such activities can accelerate many natural changes.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Life Science

The cell

- Cells have particular structures that underlie their functions. Every cell is surrounded by a membrane that separates it from the outside world. Inside the cell is a concentrated mixture of thousands of different molecules which form a variety of specialized structures that carry out such cell functions as energy production, transport of molecules, waste disposal, synthesis of new molecules, and the storage of genetic material.

Interdependence of organisms

- Human beings live within the world's ecosystems. Increasingly, humans modify ecosystems as a result of population growth, technology, and consumption. Human destruction of habitats through direct harvesting, pollution, atmospheric changes, and other factors is threatening current global stability, and if not addressed, ecosystems will be irreversibly affected.

Matter, energy, and organization in living systems

- The complexity and organization of organisms accommodates the need for obtaining, transforming, transporting, releasing, and eliminating the matter and energy used to sustain the organism.

Science and Technology

Understandings about science and technology

- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies

often extend the current levels of scientific understanding and introduce new areas of research.

- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

Science in Personal and Social Perspectives

Population growth

- Populations grow or decline through the combined effects of births and deaths, and through emigration and immigration. Populations can increase through linear or exponential growth, with effects on resource use and environmental pollution.

Natural resources

- Humans use many natural systems as resources. Natural systems have the capacity to reuse waste, but that capacity is limited. Natural systems can change to an extent that exceeds the limits of organisms to adapt naturally or humans to adapt technologically.

Environmental quality

- Natural ecosystems provide an array of basic processes that affect humans. Those processes include maintenance of the quality of the atmosphere, generation of soils, control of the hydrologic cycle, disposal of wastes, and recycling of nutrients. Humans are changing many of these basic processes, and the changes may be detrimental to humans.
- Materials from human societies affect both physical and chemical cycles of the earth.
- Many factors influence environmental quality. Factors that students might investigate include population growth, resource use, population distribution, overconsumption, the capacity of technology to solve problems, poverty, the role of economic, political, and religious views, and different ways humans view the earth.

Natural and human-induced hazards

- Human activities can enhance potential for hazards. Acquisition of resources, urban growth, and waste disposal can accelerate rates of natural change. Science and technology in local, national, and global challenges
- Humans have a major effect on other species. For example, the influence of humans on other organisms occurs through land use—which decreases space available to other species—and pollution—which changes the chemical composition of air, soil, and water.

History and Nature of Science

Science as a human endeavor

- Scientists are influenced by societal, cultural, and personal beliefs and ways of viewing the world. Science is not separate from society but rather science is a part of society.
- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Genes

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.

Life Science

Life cycles of organisms

- Plants and animals closely resemble their parents.
- Many characteristics of an organism are inherited from the parents of the organism, but other characteristics result from an individual's interactions with the environment. Inherited characteristics include the color of flowers and the number of limbs of an animal. Other features, such as the ability to ride a bicycle, are learned through interactions with the environment and cannot be passed on to the next generation.

Science and Technology

Understandings about science and technology

- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

- Use appropriate tools and techniques to gather, analyze, and interpret data.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- All organisms are composed of cells—the fundamental unit of life. Most organisms are single cells; other organisms, including humans, are multicellular.
- Cells carry on the many functions needed to sustain life. They grow and divide, thereby producing more cells. This requires that they take in nutrients, which they use to provide energy for the work that cells do and to make the materials that a cell or an organism needs.

Reproduction and heredity

- Reproduction is a characteristic of all living systems; because no individual organism lives forever, reproduction is essential to the continuation of every species. Some organisms reproduce asexually. Other organisms reproduce sexually.
- In many species, including humans, females produce eggs and males produce sperm. Plants also reproduce sexually—the egg and sperm are produced in the flowers of flowering plants. An egg and sperm unite to begin development of a new individual. That new individual receives genetic information from its mother (via the egg) and its father (via the sperm). Sexually produced offspring never are identical to either of their parents.
- Every organism requires a set of instructions for specifying its traits. Heredity is the passage of these instructions from one generation to another.
- Hereditary information is contained in genes, located in the chromosomes of each cell. Each gene carries a single unit of information. An inherited trait of an individual can be determined by one or by many genes, and a single gene can influence more than one trait. A human cell contains many thousands of different genes.
- The characteristics of an organism can be described in terms of a combination of traits. Some traits are inherited and others result from interactions with the environment.

Regulation and behavior

- Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Life Science

The cell

- Cells store and use information to guide their functions. The genetic information stored in DNA is used to direct the synthesis of the thousands of proteins that each cell requires.
- Cell functions are regulated. Regulation occurs both through changes in the activity of the functions performed by proteins and through the selective expression of individual genes. This regulation allows cells to respond to their environment and to control and coordinate cell growth and division.
- Cells can differentiate, and complex multicellular organisms are formed as a highly organized arrangement of differentiated cells. In the development of these multicellular organisms, the progeny from a single cell form an embryo in which the cells multiply and differentiate to form the many specialized cells, tissues and organs that comprise the final organism. This differentiation is regulated through the expression of different genes.

Molecular basis of heredity

- In all organisms, the instructions for specifying the characteristics of the organism are carried in DNA, a large polymer formed from subunits of four kinds (A, G, C, and T). The chemical and structural properties of DNA explain how the genetic information that underlies heredity is both encoded in genes (as a string of molecular "letters") and replicated (by a templating mechanism). Each DNA molecule in a cell forms a single chromosome.
- Most of the cells in a human contain two copies of each of 22 different chromosomes. In addition, there is a pair of chromosomes that determines sex: a female contains two X chromosomes and a male contains one X and one Y chromosome. Transmission of genetic information to offspring occurs through egg and sperm cells that contain only one representative from each chromosome pair. An egg and a sperm unite to form a new individual. The fact that the human body is formed from cells that contain two copies of each chromosome—and therefore two copies of each gene—explains many features of human heredity, such as how variations that are hidden in one generation can be expressed in the next.
- Changes in DNA (mutations) occur spontaneously at low rates. Some of these changes make no difference to the organism, whereas others can change cells and

organisms. Only mutations in germ cells can create the variation that changes an organism's offspring.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Germs

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Science and Technology

Understandings about science and technology

- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Science in Personal and Social Perspectives

Personal health

- Individuals have some responsibility for their own health. Students should engage in personal care—dental hygiene, cleanliness, and exercise—that will maintain and improve health. Understandings include how communicable diseases, such as colds, are transmitted and some of the body's defense mechanisms that prevent or overcome illness.
- Nutrition is essential to health. Students should understand how the body uses food and how various foods contribute to health. Recommendations for good nutrition include eating a variety of foods, eating less sugar, and eating less fat.
- Different substances can damage the body and how it functions. Such substances include tobacco, alcohol, over-the-counter medicines, and illicit drugs. Students should understand that some substances, such as prescription drugs, can be beneficial, but that any substance can be harmful if used inappropriately.

Science and technology in local challenges

- Science and technology have greatly improved food quality and quantity, transportation, health, sanitation, and communication. These benefits of science and technology are not available to all of the people in the world.

History and Nature of Science

Science as a human endeavor

- Men and women have made a variety of contributions throughout the history of science and technology.
- Although men and women using scientific inquiry have learned much about the objects, events, and phenomena in nature, much more remains to be understood. Science will never be finished.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Life Science

Structure and function in living systems

- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.
- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection from disease. These systems interact with one another.
- Disease is a breakdown in structures or functions of an organism. Some diseases are the result of intrinsic failures of the system. Others are the result of damage by infection by other organisms.

Science in Personal and Social Perspectives

Personal health

- Sex drive is a natural human function that requires understanding. Sex is also a prominent means of transmitting diseases. The diseases can be prevented through a variety of precautions.
- Natural environments may contain substances (for example, radon and lead) that are harmful to human beings. Maintaining environmental health involves establishing or monitoring quality standards related to use of soil, water, and air.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Science in Personal and Social Perspectives

Personal and community health

- The severity of disease symptoms is dependent on many factors, such as human resistance and the virulence of the disease-producing organism. Many diseases can be prevented, controlled, or cured. Some diseases, such as cancer, result from specific body dysfunctions and cannot be transmitted.
- Personal choice concerning fitness and health involves multiple factors. Personal goals, peer and social pressures, ethnic and religious beliefs, and understanding of biological consequences can all influence decisions about health practices.
- Families serve basic health needs, especially for young children. Regardless of the family structure, individuals have families that involve a variety of physical, mental, and social relationships that influence the maintenance and improvement of health.
- Sexuality is basic to the physical, mental, and social development of humans. Students should understand that human sexuality involves biological functions, psychological motives, and cultural, ethnic, religious, and technological influences. Sex is a basic and powerful force that has consequences to individuals' health and to society. Students should understand various methods of controlling the reproduction process and that each method has a different type of effectiveness and different health and social consequences.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Historical perspectives

Occasionally, there are advances in science and technology that have important and long-lasting effects on science and society. Examples of such advances include the following: Copernican revolution, Newtonian mechanics, relativity, geologic time scale, plate tectonics, atomic theory, nuclear physics, biological evolution, germ theory, Industrial revolution, molecular biology, information and communication, quantum theory, galactic universe, medical and health technology.

Gravity

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Men and women have made a variety of contributions throughout the history of science and technology.

Grades 5-8

Science as Inquiry

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Physical Science

Motions and forces

- The motion of an object can be described by its position, direction of motion, and speed. That motion can be measured and represented on a graph.
- An object that is not being subjected to a force will continue to move at a constant speed and in a straight line.
- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

Earth and Space Science

Earth in the solar system

- The earth is the third planet from the sun in a system that includes the moon, the sun, eight other planets and their moons, and smaller objects, such as asteroids and comets. The sun, an average star, is the central and largest body in the solar system.
- Gravity is the force that keeps planets in orbit around the sun and governs the rest of the motion in the solar system. Gravity alone holds us to the earth's surface and explains the phenomena of the tides.

Science and Technology

Understandings about science and technology

Many different people in different cultures have made and continue to make contributions to science and technology.

History and Nature of Science

History of science

- In historical perspective, science has been practiced by different individuals in different cultures. In looking at the history of many peoples, one finds that scientists and engineers of high achievement are considered to be among the most valued contributors to their culture.
- Tracing the history of science can show how difficult it was for scientific innovators to break through the accepted ideas of their time to reach the conclusions that we currently take for granted.

Grades 9-12

Science as Inquiry

Understandings about scientific inquiry

Scientists conduct investigations for a wide variety of reasons. For example, they
may wish to discover new aspects of the natural world, explain recently observed
phenomena, or test the conclusions of prior investigations or the predictions of
current theories.

Physical Science

Motions and forces

- Gravitation is a universal force that each mass exerts on any other mass. The strength of the gravitational attractive force between two masses is proportional to the masses and inversely proportional to the square of the distance between them.

Heart

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

Plan and conduct a simple investigation.

Life Science

The characteristics of organisms

- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

Science and Technology

Understandings about science and technology

- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.

Science in Personal and Social Perspectives

Personal health

- Individuals have some responsibility for their own health. Students should engage in personal care—dental hygiene, cleanliness, and exercise—that will maintain and improve health. Understandings include how communicable diseases, such as colds, are transmitted and some of the body's defense mechanisms that prevent or overcome illness.
- Nutrition is essential to health. Students should understand how the body uses food and how various foods contribute to health. Recommendations for good nutrition include eating a variety of foods, eating less sugar, and eating less fat.

History and Nature of Science

Science as a human endeavor

• Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.
- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection from disease. These systems interact with one another.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.

Science in Personal and Social Perspectives

Personal health

Regular exercise is important to the maintenance and improvement of health. The benefits of physical fitness include maintaining healthy weight, having energy and strength for routine activities, good muscle tone, bone strength, strong heart/lung systems, and improved mental health. Personal exercise, especially developing cardiovascular endurance, is the foundation of physical fitness.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Life Science

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized

cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.

- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change.

Science and Technology

Understandings about science and technology

Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

Science in Personal and Social Perspectives

- Personal and community health
 - Personal choice concerning fitness and health involves multiple factors. Personal goals, peer and social pressures, ethnic and religious beliefs, and understanding of biological consequences can all influence decisions about health practices.
 - Selection of foods and eating patterns determine nutritional balance. Nutritional balance has a direct effect on growth and development and personal well-being. Personal and social factors—such as habits, family income, ethnic heritage, body size, advertising, and peer pressure—influence nutritional choices.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Heat

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Materials can exist in different states—solid, liquid, and gas. Some common materials, such as water, can be changed from one state to another by heating or cooling.
- Light, heat, electricity, and magnetism
 - Heat can be produced in many ways, such as burning, rubbing, or mixing one substance with another. Heat can move from one object to another by conduction.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

History and Nature of Science

Science as a human endeavor

- Men and women have made a variety of contributions throughout the history of science and technology.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

- Use appropriate tools and techniques to gather, analyze, and interpret data.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more

information; some involve discovery of new objects and phenomena; and some involve making models.

- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Physical Science

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.
- In most chemical and nuclear reactions, energy is transferred into or out of a system. Heat, light, mechanical motion, or electricity might all be involved in such transfers.
- The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Many different people in different cultures have made and continue to make contributions to science and technology.
- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and

creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used..
- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to questions and possible modification; and it must be based on historical and current scientific knowledge.

Physical Science

Structure and properties of matter

- Solids, liquids, and gases differ in the distances and angles between molecules or atoms and therefore the energy that binds them together. In solids the structure is nearly rigid; in liquids molecules or atoms move around each other but do not move apart; and in gases molecules or atoms move almost independently of each other and are mostly far apart.

Chemical reactions

- Chemical reactions occur all around us, for example in health care, cooking, cosmetics, and automobiles. Complex chemical reactions involving carbon-based molecules take place constantly in every cell in our bodies.
- Chemical reactions may release or consume energy. Some reactions such as the burning of fossil fuels release large amounts of energy by losing heat and by emitting light. Light can initiate many chemical reactions such as photosynthesis and the evolution of urban smog.

Conservation of energy and the increase in disorder

- Heat consists of random motion and the vibrations of atoms, molecules, and ions. The higher the temperature, the greater the atomic or molecular motion.
- Everything tends to become less organized and less orderly over time. Thus, in all energy transfers, the overall effect is that the energy is spread out uniformly. Examples are the transfer of energy from hotter to cooler objects by conduction, radiation, or convection and the warming of our surroundings when we burn fuels.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines,

including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.

- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Nature of scientific knowledge

- Science distinguishes itself from other ways of knowing and from other bodies of knowledge through the use of empirical standards, logical arguments, and skepticism, as scientists strive for the best possible explanations about the natural world.

Human Transportation

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

Plan and conduct a simple investigation.

Earth and Space Science

Objects in the sky

• The sun, moon, stars, clouds, birds, and airplanes all have properties, locations, and movements that can be observed and described.

Science and Technology

Understandings about science and technology

- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.

Abilities to distinguish between natural objects and objects made by humans

- Some objects occur in nature; others have been designed and made by people to solve human problems and enhance the quality of life.

Science in Personal and Social Perspectives

Science and technology in local challenges

- People continue inventing new ways of doing things, solving problems, and getting work done. New ideas and inventions often affect other people; sometimes the effects are good and sometimes they are bad. It is helpful to try to determine in advance how ideas and inventions will affect other people.
- Science and technology have greatly improved food quality and quantity, transportation, health, sanitation, and communication. These benefits of science and technology are not available to all of the people in the world.

History and Nature of Science

Science as a human endeavor

Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Life Science

Diversity and adaptations of organisms

- Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

Science and Technology

Understandings about science and technology

- Many different people in different cultures have made and continue to make contributions to science and technology.

Science in Personal and Social Perspectives

Natural hazards

- Human activities also can induce hazards through resource acquisition, urban growth, land-use decisions, and waste disposal. Such activities can accelerate many natural changes.

Science and technology in society

- Technology influences society through its products and processes. Technology influences the quality of life and the ways people act and interact. Technological changes are often accompanied by social, political, and economic changes that can be beneficial or detrimental to individuals and to society. Social needs, attitudes, and values influence the direction of technological development.
- Science and technology have advanced through contributions of many different people, in different cultures, at different times in history. Science and technology have contributed enormously to economic growth and productivity among societies and groups within societies.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Life Science

Interdependence of organisms

- Human beings live within the world's ecosystems. Increasingly, humans modify ecosystems as a result of population growth, technology, and consumption. Human destruction of habitats through direct harvesting, pollution, atmospheric changes, and other factors is threatening current global stability, and if not addressed, ecosystems will be irreversibly affected.

Science and Technology

Understandings about science and technology

- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

Science in Personal and Social Perspective

Environmental quality

- Many factors influence environmental quality. Factors that students might investigate include population growth, resource use, population distribution, overconsumption, the capacity of technology to solve problems, poverty, the role of economic, political, and religious views, and different ways humans view the earth.

Science and technology in local, national, and global challenges

- Humans have a major effect on other species. For example, the influence of humans on other organisms occurs through land use—which decreases space available to other species—and pollution—which changes the chemical composition of air, soil, and water.

History and Nature of Science

Historical perspectives

- In history, diverse cultures have contributed scientific knowledge and technologic inventions. Modern science began to evolve rapidly in Europe several hundred years ago. During the past two centuries, it has contributed significantly to the industrialization of Western and non-Western cultures. However, other, non-European cultures have developed scientific ideas and solved human problems through technology.

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Insects

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Physical Science

Light, heat, electricity, and magnetism

- Light travels in a straight line until it strikes an object. Light can be reflected by a mirror, refracted by a lens, or absorbed by the object.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Life cycles of organisms

- Plants and animals have life cycles that include being born, developing into adults, reproducing, and eventually dying. The details of this life cycle are different for different organisms.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.
- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.
- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.

Science in Personal and Social Perspectives

Changes in environments

- Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.

Reproduction and heredity

- In many species, including humans, females produce eggs and males produce sperm. Plants also reproduce sexually—the egg and sperm are produced in the flowers of flowering plants. An egg and sperm unite to begin development of a new individual. That new individual receives genetic information from its mother (via the egg) and its father (via the sperm). Sexually produced offspring never are identical to either of their parents.

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.
- Regulation of an organism's internal environment involves sensing the internal environment and changing physiological activities to keep conditions within the range required to survive.

- Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Populations and ecosystems

 Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.

Diversity and adaptations of organisms

- Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.
- Extinction of a species occurs when the environment changes and the adaptive characteristics of a species are insufficient to allow its survival. Fossils indicate that many organisms that lived long ago are extinct. Extinction of species is common; most of the species that have lived on the earth no longer exist.

Science in Personal and Social Perspectives

Science and technology in society

- Scientists and engineers work in many different settings, including colleges and universities, businesses and industries, specific research institutes, and government agencies.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Life Science

Biological evolution

- The great diversity of organisms is the result of more than 3.5 billion years of evolution that has filled every available niche with life forms.
- Biological classifications are based on how organisms are related. Organisms are classified into a hierarchy of groups and subgroups based on similarities which reflect their evolutionary relationships. Species is the most fundamental unit of classification.

Interdependence of organisms

- Energy flows through ecosystems in one direction, from photosynthetic organisms to herbivores to carnivores and decomposers.
- Organisms both cooperate and compete in ecosystems. The interrelationships and interdependencies of these organisms may generate ecosystems that are stable for hundreds or thousands of years.

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.
- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Historical perspectives

- Usually, changes in science occur as small modifications in extant knowledge. The daily work of science and engineering results in incremental advances in our understanding of the world and our ability to meet human needs and aspirations. Much can be learned about the internal workings of science and the nature of science from study of individual scientists, their daily work, and their efforts to advance scientific knowledge in their area of study.

Inventions

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.
- Communicate investigations and explanations.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.
- Scientists make the results of their investigations public; they describe the investigations in ways that enable others to repeat the investigations.
- Scientists review and ask questions about the results of other scientists' work.

Physical Science

Light, heat, electricity, and magnetism

- Electricity in circuits can produce light, heat, sound, and magnetic effects. Electrical circuits require a complete loop through which an electrical current can pass.

Science and Technology

Abilities of technological design

- Identify a simple problem.
- Propose a solution.
- Implementing proposed solutions.

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Science in Personal and Social Perspectives

Science and technology in local challenges

- People continue inventing new ways of doing things, solving problems, and getting work done. New ideas and inventions often affect other people; sometimes the effects are good and sometimes they are bad. It is helpful to try to determine in advance how ideas and inventions will affect other people.
- Science and technology have greatly improved food quality and quantity, transportation, health, sanitation, and communication. These benefits of science and technology are not available to all of the people in the world.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

- Use appropriate tools and techniques to gather, analyze, and interpret data.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.
- Scientific investigations sometimes result in new ideas and phenomena for study, generate new methods or procedures for an investigation, or develop new technologies to improve the collection of data. All of these results can lead to new investigations.

Physical Science

Transfer of energy

- Electrical circuits provide a means of transferring electrical energy when heat, light, sound, and chemical changes are produced.
- In most chemical and nuclear reactions, energy is transferred into or out of a system. Heat, light, mechanical motion, or electricity might all be involved in such transfers.

Science and Technology

Abilities of technological design

- Identify appropriate problems for technological design.
- Design a solution or product.
- Implement a proposed design.
- Communicate the process of technological design.

Understandings about science and technology

- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.
- Perfectly designed solutions do not exist. All technological solutions have trade-offs, such as safety, cost, efficiency, and appearance. Engineers often build in back-up systems to provide safety. Risk is part of living in a highly technological world. Reducing risk often results in new technology.
- Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.

Science in Personal and Social Perspectives

Science and technology in society

- Societal challenges often inspire questions for scientific research, and social priorities often influence research priorities through the availability of funding for research.
- Technology influences society through its products and processes. Technology influences the quality of life and the ways people act and interact. Technological changes are often accompanied by social, political, and economic changes that can be beneficial or detrimental to individuals and to society. Social needs, attitudes, and values influence the direction of technological development.
- Scientists and engineers work in many different settings, including colleges and universities, businesses and industries, specific research institutes, and government agencies.

History and Nature of Science

Science as a human endeavor

- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.
- Nature of science
 - Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.
- Use technology and mathematics to improve investigations and communications.

- Formulate and revise scientific explanations and models using logic and evidence. Understandings about scientific inquiry

- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Science and Technology

Abilities of technological design

- Identify a problem or design an opportunity.
- Implement a proposed solution.

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

Science in Personal and Social Perspectives

Science and technology in local, national, and global challenges

- Progress in science and technology can be affected by social issues and challenges. Funding priorities for specific health problems serve as examples of ways that social issues influence science and technology.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Invertebrates

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Organisms and their environments

- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.

History and Nature of Science

Science as a human endeavor

Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.

Reproduction and heredity

- Reproduction is a characteristic of all living systems; because no individual organism lives forever, reproduction is essential to the continuation of every species. Some organisms reproduce asexually. Other organisms reproduce sexually.
- In many species, including humans, females produce eggs and males produce sperm. Plants also reproduce sexually—the egg and sperm are produced in the flowers of flowering plants. An egg and sperm unite to begin development of a new individual. That new individual receives genetic information from its mother (via the egg) and its father (via the sperm). Sexually produced offspring never are identical to either of their parents.

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.
- Regulation of an organism's internal environment involves sensing the internal environment and changing physiological activities to keep conditions within the range required to survive.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Populations and ecosystems

Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.

Diversity and adaptations of organisms

- Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and

creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Life Science

Biological evolution

- The great diversity of organisms is the result of more than 3.5 billion years of evolution that has filled every available niche with life forms.
- Biological classifications are based on how organisms are related. Organisms are classified into a hierarchy of groups and subgroups based on similarities which reflect their evolutionary relationships. Species is the most fundamental unit of classification.

Interdependence of organisms

- Energy flows through ecosystems in one direction, from photosynthetic organisms to herbivores to carnivores and decomposers.

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.
- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major

scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Lakes and Ponds

Grades K-4 Science as Inquiry

Understandings about scientific inquiry

Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.

Life Science

The characteristics of organisms

Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.
- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.
- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.
- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Earth and Space Science

Properties of earth materials

 Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

- Soils have properties of color and texture, capacity to retain water, and ability to support the growth of many kinds of plants, including those in our food supply.

Objects in the sky

- The sun provides the light and heat necessary to maintain the temperature of the earth.
 - Changes in the earth and sky
- The surface of the earth changes. Some changes are due to slow processes, such as erosion and weathering, and some changes are due to rapid processes, such as landslides, volcanic eruptions, and earthquakes.

Science and Technology

Understandings about science and technology

- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Abilities to distinguish between natural objects and objects made by humans

- Some objects occur in nature; others have been designed and made by people to solve human problems and enhance the quality of life.

Science in Personal and Social Perspectives

Types of resources

- Some resources are basic materials, such as air, water, and soil; some are produced from basic resources, such as food, fuel, and building materials; and some resources are nonmaterial, such as quiet places, beauty, security, and safety.

Changes in environments

- Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.
- Changes in environments can be natural or influenced by humans. Some changes are good, some are bad, and some are neither good nor bad. Pollution is a change in the environment that can influence the health, survival, or activities of organisms, including humans.
- Some environmental changes occur slowly, and others occur rapidly. Students should understand the different consequences of changing environments in small increments over long periods as compared with changing environments in large increments over short periods.

History and Nature of Science

Science as a human endeavor

Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Understandings about scientific inquiry

Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Physical Science

Transfer of energy

The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.

Life Science

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.
- Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating

other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.

- For ecosystems, the major source of energy is sunlight. Energy entering ecosystems as sunlight is transferred by producers into chemical energy through photosynthesis. That energy then passes from organism to organism in food webs.

Earth and Space Science

Structure of the earth system

- Land forms are the result of a combination of constructive and destructive forces. Constructive forces include crustal deformation, volcanic eruption, and deposition of sediment, while destructive forces include weathering and erosion.
- Water, which covers the majority of the earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the "water cycle." Water evaporates from the earth's surface, rises and cools as it moves to higher elevations, condenses as rain or snow, and falls to the surface where it collects in lakes, oceans, soil, and in rocks underground.

Earth's history

- The earth processes we see today, including erosion, movement of lithospheric plates, and changes in atmospheric composition, are similar to those that occurred in the past. earth history is also influenced by occasional catastrophes, such as the impact of an asteroid or comet.
- Gravity is the force that keeps planets in orbit around the sun and governs the rest of the motion in the solar system. Gravity alone holds us to the earth's surface and explains the phenomena of the tides.
- The sun is the major source of energy for phenomena on the earth's surface, such as growth of plants, winds, ocean currents, and the water cycle. Seasons result from variations in the amount of the sun's energy hitting the surface, due to the tilt of the earth's rotation on its axis and the length of the day.

Science and Technology

Understandings about science and technology

- Perfectly designed solutions do not exist. All technological solutions have trade-offs, such as safety, cost, efficiency, and appearance. Engineers often build in back-up systems to provide safety. Risk is part of living in a highly technological world. Reducing risk often results in new technology.
- Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.
- Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.

Science in Personal and Social Perspectives

Personal health

- Natural environments may contain substances (for example, radon and lead) that are harmful to human beings. Maintaining environmental health involves establishing or monitoring quality standards related to use of soil, water, and air.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science,

engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Life Science

The cell

- Plant cells contain chloroplasts, the site of photosynthesis. Plants and many microorganisms use solar energy to combine molecules of carbon dioxide and water into complex, energy rich organic compounds and release oxygen to the environment. This process of photosynthesis provides a vital connection between the sun and the energy needs of living systems.

Interdependence of organisms

- Energy flows through ecosystems in one direction, from photosynthetic organisms to herbivores to carnivores and decomposers.
- Organisms both cooperate and compete in ecosystems. The interrelationships and interdependencies of these organisms may generate ecosystems that are stable for hundreds or thousands of years.
- Human beings live within the world's ecosystems. Increasingly, humans modify ecosystems as a result of population growth, technology, and consumption. Human destruction of habitats through direct harvesting, pollution, atmospheric changes, and other factors is threatening current global stability, and if not addressed, ecosystems will be irreversibly affected.
- The distribution and abundance of organisms and populations in ecosystems are limited by the availability of matter and energy and the ability of the ecosystem to recycle materials.

Behavior of organisms

- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change.

Science and Technology

Understandings about science and technology

- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is

driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

Science in Personal and Social Perspectives

Natural resources

- Humans use many natural systems as resources. Natural systems have the capacity to reuse waste, but that capacity is limited. Natural systems can change to an extent that exceeds the limits of organisms to adapt naturally or humans to adapt technologically.

Environmental quality

- Natural ecosystems provide an array of basic processes that affect humans. Those processes include maintenance of the quality of the atmosphere, generation of soils, control of the hydrologic cycle, disposal of wastes, and recycling of nutrients. Humans are changing many of these basic processes, and the changes may be detrimental to humans.

Natural and human-induced hazards

- Human activities can enhance potential for hazards. Acquisition of resources, urban growth, and waste disposal can accelerate rates of natural change.
- Some hazards, such as earthquakes, volcanic eruptions, and severe weather, are rapid and spectacular. But there are slow and progressive changes that also result in problems for individuals and societies. For example, change in stream channel position, erosion of bridge foundations, sedimentation in lakes and harbors, coastal erosions, and continuing erosion and wasting of soil and landscapes can all negatively affect society.

Science and technology in local, national, and global challenges.

- Understanding basic concepts and principles of science and technology should precede active debate about the economics, policies, politics, and ethics of various science- and technology-related challenges. However, understanding science alone will not resolve local, national, or global challenges.
- Humans have a major effect on other species. For example, the influence of humans on other organisms occurs through land use—which decreases space available to other species—and pollution—which changes the chemical composition of air, soil, and water.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Life Cycles

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.

Life Science

Life cycles of organisms

- Plants and animals have life cycles that include being born, developing into adults, reproducing, and eventually dying. The details of this life cycle are different for different organisms.
- Plants and animals closely resemble their parents.
- Many characteristics of an organism are inherited from the parents of the organism, but other characteristics result from an individual's interactions with the environment. Inherited characteristics include the color of flowers and the number of limbs of an animal. Other features, such as the ability to ride a bicycle, are learned through interactions with the environment and cannot be passed on to the next generation.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Life Science

Reproduction and heredity

- Reproduction is a characteristic of all living systems; because no individual organism lives forever, reproduction is essential to the continuation of every species. Some organisms reproduce asexually. Other organisms reproduce sexually.
- In many species, including humans, females produce eggs and males produce sperm. Plants also reproduce sexually—the egg and sperm are produced in the flowers of flowering plants. An egg and sperm unite to begin development of a new individual.

That new individual receives genetic information from its mother (via the egg) and its father (via the sperm). Sexually produced offspring never are identical to either of their parents.

- Every organism requires a set of instructions for specifying its traits. Heredity is the passage of these instructions from one generation to another.
- Hereditary information is contained in genes, located in the chromosomes of each cell. Each gene carries a single unit of information. An inherited trait of an individual can be determined by one or by many genes, and a single gene can influence more than one trait. A human cell contains many thousands of different genes.
- The characteristics of an organism can be described in terms of a combination of traits. Some traits are inherited and others result from interactions with the environment.

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.

Diversity and adaptations of organisms

- Millions of species of animals, plants, and microorganisms are alive today. Although different species might look dissimilar, the unity among organisms becomes apparent from an analysis of internal structures, the similarity of their chemical processes, and the evidence of common ancestry.
- Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Life Science

The cell

Cells can differentiate, and complex multicellular organisms are formed as a highly organized arrangement of differentiated cells. In the development of these multicellular organisms, the progeny from a single cell form an embryo in which the cells multiply and differentiate to form the many specialized cells, tissues and organs that comprise the final organism. This differentiation is regulated through the expression of different genes.

Behavior of organisms

- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Light and Color

Grades K-4 Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.

Light, heat, electricity, and magnetism

- Light travels in a straight line until it strikes an object. Light can be reflected by a mirror, refracted by a lens, or absorbed by the object.
- Heat can be produced in many ways, such as burning, rubbing, or mixing one substance with another. Heat can move from one object to another by conduction.

Earth and Space Science

Properties of earth materials

Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

Objects in the sky

- The sun provides the light and heat necessary to maintain the temperature of the earth.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Develop descriptions, explanations, predictions, and models using evidence.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of

substances often can be separated into the original substances using one or more of the characteristic properties.

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Light interacts with matter by transmission (including refraction), absorption, or scattering (including reflection). To see an object, light from that object—emitted by or scattered from it—must enter the eye.
- The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Physical Science

Chemical reactions

- Chemical reactions may release or consume energy. Some reactions such as the burning of fossil fuels release large amounts of energy by losing heat and by emitting light. Light can initiate many chemical reactions such as photosynthesis and the evolution of urban smog.

Interactions of energy and matter

- Waves, including sound and seismic waves, waves on water, and light waves, have energy and can transfer energy when they interact with matter.
- Each kind of atom or molecule can gain or lose energy only in particular discrete amounts and thus can absorb and emit light only at wavelengths corresponding to these amounts. These wavelengths can be used to identify the substance.

Light Optics

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Light, heat, electricity, and magnetism

- Light travels in a straight line until it strikes an object. Light can be reflected by a mirror, refracted by a lens, or absorbed by the object.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Physical Science

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Light interacts with matter by transmission (including refraction), absorption, or scattering (including reflection). To see an object, light from that object—emitted by or scattered from it—must enter the eye.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences.
 Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Many different people in different cultures have made and continue to make contributions to science and technology.
- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.
- Perfectly designed solutions do not exist. All technological solutions have trade-offs, such as safety, cost, efficiency, and appearance. Engineers often build in back-up systems to provide safety. Risk is part of living in a highly technological world. Reducing risk often results in new technology.
- Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.
- Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed

phenomena, or test the conclusions of prior investigations or the predictions of current theories.

- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to questions and possible modification; and it must be based on historical and current scientific knowledge.

Physical Science

Interactions of energy and matter

- Waves, including sound and seismic waves, waves on water, and light waves, have energy and can transfer energy when they interact with matter.
- Electromagnetic waves result when a charged object is accelerated or decelerated. Electromagnetic waves include radio waves (the longest wavelength), microwaves, infrared radiation (radiant heat), visible light, ultraviolet radiation, x-rays, and gamma rays. The energy of electromagnetic waves is carried in packets whose magnitude is inversely proportional to the wavelength.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.

Magnetism

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.

Light, heat, electricity, and magnetism

- Electricity in circuits can produce light, heat, sound, and magnetic effects. Electrical circuits require a complete loop through which an electrical current can pass.
- Magnets attract and repel each other and certain kinds of other materials.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

Transfer of energy

- Electrical circuits provide a means of transferring electrical energy when heat, light, sound, and chemical changes are produced.

Earth and Space Science

Structure of the earth system

- The solid earth is layered with a lithosphere; hot, convecting mantle; and dense, metallic core.

Earth in the solar system

- The sun is the major source of energy for phenomena on the earth's surface, such as growth of plants, winds, ocean currents, and the water cycle. Seasons result from variations in the amount of the sun's energy hitting the surface, due to the tilt of the earth's rotation on its axis and the length of the day.

Grades 9-12

Science as Inquiry

- Abilities necessary to do scientific inquiry
 - Design and conduct scientific investigations.

Physical Science

Structure of atoms

• Matter is made of minute particles called atoms, and atoms are composed of even smaller components. These components have measurable properties, such as mass and electrical charge. Each atom has a positively charged nucleus surrounded by negatively charged electrons. The electric force between the nucleus and electrons holds the atom together.

Motions and forces

- The electric force is a universal force that exists between any two charged objects. Opposite charges attract while like charges repel. The strength of the force is proportional to the charges, and, as with gravitation, inversely proportional to the square of the distance between them.
- Electricity and magnetism are two aspects of a single electromagnetic force. Moving electric charges produce magnetic forces, and moving magnets produce electric forces. These effects help students to understand electric motors and generators.

Mammals

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Physical Science

Transfer of energy

- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.

Life Science

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.
- Regulation of an organism's internal environment involves sensing the internal environment and changing physiological activities to keep conditions within the range required to survive.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Diversity and adaptations of organisms

- Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.

Life Science

Biological evolution

- The great diversity of organisms is the result of more than 3.5 billion years of evolution that has filled every available niche with life forms.
- Biological classifications are based on how organisms are related. Organisms are classified into a hierarchy of groups and subgroups based on similarities which reflect their evolutionary relationships. Species is the most fundamental unit of classification.

Behavior of organisms

- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change.

- Like other aspects of an organism's biology, behaviors have evolved through natural selection. Behaviors often have an adaptive logic when viewed in terms of evolutionary principles.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Marine Mammals

Grades K-4 Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.

History and Nature of Science

Science as a human endeavor

- Although men and women using scientific inquiry have learned much about the objects, events, and phenomena in nature, much more remains to be understood. Science will never be finished.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Physical Science

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.

Life Science

Reproduction and heredity

- Reproduction is a characteristic of all living systems; because no individual organism lives forever, reproduction is essential to the continuation of every species. Some organisms reproduce asexually. Other organisms reproduce sexually.
- The characteristics of an organism can be described in terms of a combination of traits. Some traits are inherited and others result from interactions with the environment.

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.
- Regulation of an organism's internal environment involves sensing the internal environment and changing physiological activities to keep conditions within the range required to survive.
- Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Diversity and adaptations of organisms

 Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science,

engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Life Science

Biological evolution

- The great diversity of organisms is the result of more than 3.5 billion years of evolution that has filled every available niche with life forms.
- Biological classifications are based on how organisms are related. Organisms are classified into a hierarchy of groups and subgroups based on similarities which reflect their evolutionary relationships. Species is the most fundamental unit of classification.

Behavior of organisms

- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change.

Science and Technology

Understandings about science and technology

 Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Nature of scientific knowledge

- Because all scientific ideas depend on experimental and observational confirmation, all scientific knowledge is, in principle, subject to change as new evidence becomes available. The core ideas of science such as the conservation of energy or the laws of motion have been subjected to a wide variety of confirmations and are therefore unlikely to change in the areas in which they have been tested. In areas where data or understanding are incomplete, such as the details of human evolution or questions surrounding global warming, new data may well lead to changes in current ideas or resolve current conflicts. In situations where information is still fragmentary, it is normal for scientific ideas to be incomplete, but this is also where the opportunity for making advances may be greatest.

Measurement

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.

Science and Technology

Understandings about science and technology

- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Men and women have made a variety of contributions throughout the history of science and technology.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences.
 Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.

- Design and conduct scientific investigations.

- Use technology and mathematics to improve investigations and communications. Understandings about scientific inquiry

- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Science and Technology

Understandings about science and technology

- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

History and Nature of Science

Historical perspectives

- In history, diverse cultures have contributed scientific knowledge and technologic inventions. Modern science began to evolve rapidly in Europe several hundred years ago. During the past two centuries, it has contributed significantly to the industrialization of Western and non-Western cultures. However, other, non-European cultures have developed scientific ideas and solved human problems through technology.

Momentum

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Communicate investigations and explanations.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.

Position and motion of objects

- The position of an object can be described by locating it relative to another object or the background.
- An object's motion can be described by tracing and measuring its position over time.
- The position and motion of objects can be changed by pushing or pulling. The size of the change is related to the strength of the push or pull.

Science and Technology

Abilities of technological design

- Identify a simple problem.

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Science in Personal and Social Perspectives

Personal health

- Safety and security are basic needs of humans. Safety involves freedom from danger, risk, or injury. Security involves feelings of confidence and lack of anxiety and fear. Student understandings include following safety rules for home and school, preventing abuse and neglect, avoiding injury, knowing whom to ask for help, and when and how to say no.

Science and technology in local challenges

- People continue inventing new ways of doing things, solving problems, and getting work done. New ideas and inventions often affect other people; sometimes the effects are good and sometimes they are bad. It is helpful to try to determine in advance how ideas and inventions will affect other people.
- Science and technology have greatly improved food quality and quantity, transportation, health, sanitation, and communication. These benefits of science and technology are not available to all of the people in the world.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.
- Communicate scientific procedures and explanations.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Physical Science

Motions and forces

- The motion of an object can be described by its position, direction of motion, and speed. That motion can be measured and represented on a graph.
- An object that is not being subjected to a force will continue to move at a constant speed and in a straight line.
- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.

Science and Technology

Abilities of technological design

- Implement a proposed design.
- Evaluate completed technological designs or products.
- Communicate the process of technological design.

Understandings about science and technology

Scientific inquiry and technological design have similarities and differences.
 Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot

contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.

- Perfectly designed solutions do not exist. All technological solutions have trade-offs, such as safety, cost, efficiency, and appearance. Engineers often build in back-up systems to provide safety. Risk is part of living in a highly technological world. Reducing risk often results in new technology.
- Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.

Science in Personal and Social Perspectives

Personal health

- The potential for accidents and the existence of hazards imposes the need for injury prevention. Safe living involves the development and use of safety precautions and the recognition of risk in personal decisions. Injury prevention has personal and social dimensions.

Science and technology in society

- Societal challenges often inspire questions for scientific research, and social priorities often influence research priorities through the availability of funding for research.
- Technology influences society through its products and processes. Technology influences the quality of life and the ways people act and interact. Technological changes are often accompanied by social, political, and economic changes that can be beneficial or detrimental to individuals and to society. Social needs, attitudes, and values influence the direction of technological development.
- Scientists and engineers work in many different settings, including colleges and universities, businesses and industries, specific research institutes, and government agencies.
- Science cannot answer all questions and technology cannot solve all human problems or meet all human needs. Students should understand the difference between scientific and other questions. They should appreciate what science and technology can reasonably contribute to society and what they cannot do. For example, new technologies often will decrease some risks and increase others.

History and Nature of Science

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

- Use technology and mathematics to improve investigations and communications. Understandings about scientific inquiry

- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed

phenomena, or test the conclusions of prior investigations or the predictions of current theories.

- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Physical Science

Motions and forces

- Objects change their motion only when a net force is applied. Laws of motion are used to calculate precisely the effects of forces on the motion of objects. The magnitude of the change in motion can be calculated using the relationship F = ma, which is independent of the nature of the force. Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object.

Conservation of energy and the increase in disorder

- The total energy of the universe is constant. Energy can be transferred by collisions in chemical and nuclear reactions, by light waves and other radiations, and in many other ways. However, it can never be destroyed. As these transfers occur, the matter involved becomes steadily less ordered.

Science and Technology

Abilities of technological design

- Identify a problem or design an opportunity.
- Implement a proposed solution.
- Evaluate the solution and its consequences.
- Communicate the problem, process, and solution.

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

Motion

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Position and motion of objects

- The position of an object can be described by locating it relative to another object or the background.
- An object's motion can be described by tracing and measuring its position over time.
- The position and motion of objects can be changed by pushing or pulling. The size of the change is related to the strength of the push or pull.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Men and women have made a variety of contributions throughout the history of science and technology.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more

information; some involve discovery of new objects and phenomena; and some involve making models.

- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Physical Science

Motions and forces

- The motion of an object can be described by its position, direction of motion, and speed. That motion can be measured and represented on a graph.
- An object that is not being subjected to a force will continue to move at a constant speed and in a straight line.
- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

History and Nature of Science

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

History of science

- Many individuals have contributed to the traditions of science. Studying some of these individuals provides further understanding of scientific inquiry, science as a human endeavor, the nature of science, and the relationships between science and society.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.
- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to

questions and possible modification; and it must be based on historical and current scientific knowledge.

Physical Science

Motions and forces

- Objects change their motion only when a net force is applied. Laws of motion are used to calculate precisely the effects of forces on the motion of objects. The magnitude of the change in motion can be calculated using the relationship F = ma, which is independent of the nature of the force. Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object.
- Gravitation is a universal force that each mass exerts on any other mass. The strength of the gravitational attractive force between two masses is proportional to the masses and inversely proportional to the square of the distance between them.

Science and Technology

Understandings about science and technology

 Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Nature of scientific knowledge

- Scientific explanations must meet certain criteria. First and foremost, they must be consistent with experimental and observational evidence about nature, and must make accurate predictions, when appropriate, about systems being studied. They should also be logical, respect the rules of evidence, be open to criticism, report methods and procedures, and make knowledge public. Explanations on how the natural world changes based on myths, personal beliefs, religious values, mystical inspiration, superstition, or authority may be personally useful and socially relevant, but not scientific.

NTV Top 11 Countdown

Grades K-4

Science as Inquiry

Understandings about scientific inquiry

- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Position and motion of objects

- The position and motion of objects can be changed by pushing or pulling. The size of the change is related to the strength of the push or pull.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

 Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Physical Science

Motions and forces

- The motion of an object can be described by its position, direction of motion, and speed. That motion can be measured and represented on a graph.
- An object that is not being subjected to a force will continue to move at a constant speed and in a straight line.
- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

Life Science

Structure and function in living systems

- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.
- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection from disease. These systems interact with one another.

Earth and Space Science

Structure of the earth system

- Water, which covers the majority of the earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the "water cycle." Water evaporates from the earth's surface, rises and cools as it moves to higher elevations, condenses as rain or snow, and falls to the surface where it collects in lakes, oceans, soil, and in rocks underground.

Earth in the solar system

- The sun is the major source of energy for phenomena on the earth's surface, such as growth of plants, winds, ocean currents, and the water cycle. Seasons result from variations in the amount of the sun's energy hitting the surface, due to the tilt of the earth's rotation on its axis and the length of the day.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

- Formulate and revise scientific explanations and models using logic and evidence. Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to questions and possible modification; and it must be based on historical and current scientific knowledge.

Physical Science

Motions and forces

- Objects change their motion only when a net force is applied. Laws of motion are used to calculate precisely the effects of forces on the motion of objects. The magnitude of the change in motion can be calculated using the relationship F = ma, which is independent of the nature of the force. Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object.

Nutrition

Grades K-4

Science as Inquiry

Understandings about scientific inquiry

Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.

Science in Personal and Social Perspectives

Personal health

- Nutrition is essential to health. Students should understand how the body uses food and how various foods contribute to health. Recommendations for good nutrition include eating a variety of foods, eating less sugar, and eating less fat.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Physical Science

Properties and changes of properties in matter

- Substances react chemically in characteristic ways with other substances to form new substances (compounds) with different characteristic properties. In chemical reactions, the total mass is conserved. Substances often are placed in categories or groups if they react in similar ways; metals is an example of such a group.

Life Science

Structure and function in living systems

- Cells carry on the many functions needed to sustain life. They grow and divide, thereby producing more cells. This requires that they take in nutrients, which they use to provide energy for the work that cells do and to make the materials that a cell or an organism needs.
- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection from disease. These systems interact with one another.

Science in Personal and Social Perspectives

Personal health

- Food provides energy and nutrients for growth and development. Nutrition requirements vary with body weight, age, sex, activity, and body functioning.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

Grades 9-12

Science as Inquiry

- Abilities necessary to do scientific inquiry
 - Design and conduct scientific investigations.
- Understandings about scientific inquiry
 - Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
 - Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Physical Science

Structure and properties of matter

- Carbon atoms can bond to one another in chains, rings, and branching networks to form a variety of structures, including synthetic polymers, oils, and the large molecules essential to life.

Chemical reactions

- Chemical reactions occur all around us, for example in health care, cooking, cosmetics, and automobiles. Complex chemical reactions involving carbon-based molecules take place constantly in every cell in our bodies.

Life Science

- The cell
 - Most cell functions involve chemical reactions. Food molecules taken into cells react to provide the chemical constituents needed to synthesize other molecules. Both breakdown and synthesis are made possible by a large set of protein catalysts, called enzymes. The breakdown of some of the food molecules enables the cell to store energy in specific chemicals that are used to carry out the many functions of the cell.

Matter, energy, and organization in living systems

- The chemical bonds of food molecules contain energy. Energy is released when the bonds of food molecules are broken and new compounds with lower energy bonds are formed. Cells usually store this energy temporarily in phosphate bonds of a small high-energy compound called ATP.

Science in Personal and Social Perspectives

Personal and community health

 Selection of foods and eating patterns determine nutritional balance. Nutritional balance has a direct effect on growth and development and personal well-being. Personal and social factors—such as habits, family income, ethnic heritage, body size, advertising, and peer pressure—influence nutritional choices.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Ocean Exploration

Grades K-4 Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

Changes in the earth and sky

- The surface of the earth changes. Some changes are due to slow processes, such as erosion and weathering, and some changes are due to rapid processes, such as landslides, volcanic eruptions, and earthquakes.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.

- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Men and women have made a variety of contributions throughout the history of science and technology.
- Although men and women using scientific inquiry have learned much about the objects, events, and phenomena in nature, much more remains to be understood. Science will never be finished.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.
- Scientific investigations sometimes result in new ideas and phenomena for study, generate new methods or procedures for an investigation, or develop new technologies to improve the collection of data. All of these results can lead to new investigations.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.
- Substances react chemically in characteristic ways with other substances to form new substances (compounds) with different characteristic properties. In chemical reactions, the total mass is conserved. Substances often are placed in categories or groups if they react in similar ways; metals is an example of such a group.

Motions and forces

- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.

Regulation and behavior

- Regulation of an organism's internal environment involves sensing the internal environment and changing physiological activities to keep conditions within the range required to survive.

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.

Earth and Space Science

Structure of the earth system

- The solid earth is layered with a lithosphere; hot, convecting mantle; and dense, metallic core.
- Lithospheric plates on the scales of continents and oceans constantly move at rates of centimeters per year in response to movements in the mantle. Major geological events, such as earthquakes, volcanic eruptions, and mountain building, result from these plate motions.
- Land forms are the result of a combination of constructive and destructive forces. Constructive forces include crustal deformation, volcanic eruption, and deposition of sediment, while destructive forces include weathering and erosion.
- Water, which covers the majority of the earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the "water cycle." Water evaporates from the earth's surface, rises and cools as it moves to higher elevations, condenses as rain or snow, and falls to the surface where it collects in lakes, oceans, soil, and in rocks underground.
- Water is a solvent. As it passes through the water cycle it dissolves minerals and gases and carries them to the oceans.
- The atmosphere is a mixture of nitrogen, oxygen, and trace gases that include water vapor. The atmosphere has different properties at different elevations.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Many different people in different cultures have made and continue to make contributions to science and technology.

- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.
- Perfectly designed solutions do not exist. All technological solutions have trade-offs, such as safety, cost, efficiency, and appearance. Engineers often build in back-up systems to provide safety. Risk is part of living in a highly technological world. Reducing risk often results in new technology.
- Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.

Science in Personal and Social Perspectives

Science and technology in society

- Science influences society through its knowledge and world view. Scientific knowledge and the procedures used by scientists influence the way many individuals in society think about themselves, others, and the environment. The effect of science on society is neither entirely beneficial nor entirely detrimental.
- Scientists and engineers work in many different settings, including colleges and universities, businesses and industries, specific research institutes, and government agencies.
- Science cannot answer all questions and technology cannot solve all human problems or meet all human needs. Students should understand the difference between scientific and other questions. They should appreciate what science and technology can reasonably contribute to society and what they cannot do. For example, new technologies often will decrease some risks and increase others.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.
- Use technology and mathematics to improve investigations and communications.

- Formulate and revise scientific explanations and models using logic and evidence. Understandings about scientific inquiry

- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed

phenomena, or test the conclusions of prior investigations or the predictions of current theories.

- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Physical Science

Structure and properties of matter

- Solids, liquids, and gases differ in the distances and angles between molecules or atoms and therefore the energy that binds them together. In solids the structure is nearly rigid; in liquids molecules or atoms move around each other but do not move apart; and in gases molecules or atoms move almost independently of each other and are mostly far apart.

Chemical reactions

- Chemical reactions occur all around us, for example in health care, cooking, cosmetics, and automobiles. Complex chemical reactions involving carbon-based molecules take place constantly in every cell in our bodies.
- A large number of important reactions involve the transfer of either electrons (oxidation/reduction reactions) or hydrogen ions (acid/base reactions) between reacting ions, molecules, or atoms. In other reactions, chemical bonds are broken by heat or light to form very reactive radicals with electrons ready to form new bonds. Radical reactions control many processes such as the presence of ozone and greenhouse gases in the atmosphere, burning and processing of fossil fuels, the formation of polymers, and explosions.
- Chemical reactions can take place in time periods ranging from the few femtoseconds (10-15 seconds) required for an atom to move a fraction of a chemical bond distance to geologic time scales of billions of years. Reaction rates depend on how often the reacting atoms and molecules encounter one another, on the temperature, and on the properties—including shape—of the reacting species.

Motions and forces

- Gravitation is a universal force that each mass exerts on any other mass. The strength of the gravitational attractive force between two masses is proportional to the masses and inversely proportional to the square of the distance between them.

Life Science

Behavior of organisms

- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change. Plants also respond to stimuli.

Earth and Space Science

Energy in the earth system

The outward transfer of earth's internal heat drives convection circulation in the mantle that propels the plates comprising earth's surface across the face of

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Nature of scientific knowledge

- Because all scientific ideas depend on experimental and observational confirmation, all scientific knowledge is, in principle, subject to change as new evidence becomes available. The core ideas of science such as the conservation of energy or the laws of motion have been subjected to a wide variety of confirmations and are therefore unlikely to change in the areas in which they have been tested. In areas where data or understanding are incomplete, such as the details of human evolution or questions surrounding global warming, new data may well lead to changes in current ideas or resolve current conflicts. In situations where information is still fragmentary, it is normal for scientific ideas to be incomplete, but this is also where the opportunity for making advances may be greatest.

Ocean Life

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues. Life cycles of organisms
- Plants and animals have life cycles that include being born, developing into adults, reproducing, and eventually dying. The details of this life cycle are different for different organisms.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.
- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.
- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.
- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Science in Personal and Social Perspectives

Changes in environments

Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.

History and Nature of Science

Science as a human endeavor

- Although men and women using scientific inquiry have learned much about the objects, events, and phenomena in nature, much more remains to be understood. Science will never be finished.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.
- Think critically and logically to make the relationships between evidence and explanations.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- All organisms are composed of cells—the fundamental unit of life. Most organisms are single cells; other organisms, including humans, are multicellular.
- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.

Reproduction and heredity

- In many species, including humans, females produce eggs and males produce sperm. Plants also reproduce sexually—the egg and sperm are produced in the flowers of flowering plants. An egg and sperm unite to begin development of a new individual. That new individual receives genetic information from its mother (via the egg) and its father (via the sperm). Sexually produced offspring never are identical to either of their parents.

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.

- Regulation of an organism's internal environment involves sensing the internal environment and changing physiological activities to keep conditions within the range required to survive.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.
 - Populations and ecosystems
- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.
- Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.
- For ecosystems, the major source of energy is sunlight. Energy entering ecosystems as sunlight is transferred by producers into chemical energy through photosynthesis. That energy then passes from organism to organism in food webs.
- The number of organisms an ecosystem can support depends on the resources available and abiotic factors, such as quantity of light and water, range of temperatures, and soil composition. Given adequate biotic and abiotic resources and no disease or predators, populations (including humans) increase at rapid rates. Lack of resources and other factors, such as predation and climate, limit the growth of populations in specific niches in the ecosystem.

Diversity and adaptations of organisms

- Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.

Earth and Space Science

Structure of the earth system

- Living organisms have played many roles in the earth system, including affecting the composition of the atmosphere, producing some types of rocks, and contributing to the weathering of rocks.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.
- Use technology and mathematics to improve investigations and communications.

- Formulate and revise scientific explanations and models using logic and evidence. Understandings about scientific inquiry

- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Life Science

The cell

 Plant cells contain chloroplasts, the site of photosynthesis. Plants and many microorganisms use solar energy to combine molecules of carbon dioxide and water into complex, energy rich organic compounds and release oxygen to the environment. This process of photosynthesis provides a vital connection between the sun and the energy needs of living systems.

Biological evolution

- Biological classifications are based on how organisms are related. Organisms are classified into a hierarchy of groups and subgroups based on similarities which reflect their evolutionary relationships. Species is the most fundamental unit of classification.

Interdependence of organisms

- Energy flows through ecosystems in one direction, from photosynthetic organisms to herbivores to carnivores and decomposers.
- Organisms both cooperate and compete in ecosystems. The interrelationships and interdependencies of these organisms may generate ecosystems that are stable for hundreds or thousands of years.

Earth and Space Science

The origin and evolution of the earth system

- Evidence for one-celled forms of life—the bacteria—extends back more than 3.5 billion years. The evolution of life caused dramatic changes in the composition of the earth's atmosphere, which did not originally contain oxygen.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Oceanography

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Life Science

The characteristics of organisms

 Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.

Earth and Space Science

Properties of earth materials

Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

Objects in the sky

• The sun provides the light and heat necessary to maintain the temperature of the earth.

Science and Technology

Understandings about science and technology

- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct a scientific investigation.
- Think critically and logically to make the relationships between evidence and explanations.
- Use mathematics in all aspects of scientific inquiry.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some

involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

- Mathematics is important in all aspects of scientific inquiry.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Physical Science

Properties and changes of properties in matter

A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

Life Science

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.

Earth and Space Science

Structure of the earth system

- Water, which covers the majority of the earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the "water cycle." Water evaporates from the earth's surface, rises and cools as it moves to higher elevations, condenses as rain or snow, and falls to the surface where it collects in lakes, oceans, soil, and in rocks underground.
- Water is a solvent. As it passes through the water cycle it dissolves minerals and gases and carries them to the oceans.
- Global patterns of atmospheric movement influence local weather. Oceans have a major effect on climate, because water in the oceans holds a large amount of heat.

Earth in the solar system

- Most objects in the solar system are in regular and predictable motion. Those motions explain such phenomena as the day, the year, phases of the moon, and eclipses.
- Gravity is the force that keeps planets in orbit around the sun and governs the rest of the motion in the solar system. Gravity alone holds us to the earth's surface and explains the phenomena of the tides.
- The sun is the major source of energy for phenomena on the earth's surface, such as growth of plants, winds, ocean currents, and the water cycle. Seasons result from variations in the amount of the sun's energy hitting the surface, due to the tilt of the earth's rotation on its axis and the length of the day.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Physical Science

Interactions of energy and matter

Waves, including sound and seismic waves, waves on water, and light waves, have energy and can transfer energy when they interact with matter.

Life Science

Biological evolution

- The great diversity of organisms is the result of more than 3.5 billion years of evolution that has filled every available niche with life forms.

Behavior of organisms

Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change. Plants also respond to stimuli.

Earth and Space Science

Energy in the earth system

- Heating of earth's surface and atmosphere by the sun drives convection within the atmosphere and oceans, producing winds and ocean currents.
- Global climate is determined by energy transfer from the sun at and near the earth's surface. This energy transfer is influenced by dynamic processes such as cloud cover and the earth's rotation, and static conditions such as the position of mountain ranges and oceans.

The origin and evolution of the earth system

- Interactions among the solid earth, the oceans, the atmosphere, and organisms have resulted in the ongoing evolution of the earth system. We can observe some changes such as earthquakes and volcanic eruptions on a human time scale, but many

processes such as mountain building and plate movements take place over hundreds of millions of years.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

Science in Personal and Social Perspectives

Environmental quality

- Natural ecosystems provide an array of basic processes that affect humans. Those processes include maintenance of the quality of the atmosphere, generation of soils, control of the hydrologic cycle, disposal of wastes, and recycling of nutrients. Humans are changing many of these basic processes, and the changes may be detrimental to humans.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Outer Space

Grades K-4 Science as Inquiry

Understandings about scientific inquiry

- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.

Position and motion of objects

- The position of an object can be described by locating it relative to another object or the background.
- An object's motion can be described by tracing and measuring its position over time.

Earth and Space Science

Objects in the sky

- The sun, moon, stars, clouds, birds, and airplanes all have properties, locations, and movements that can be observed and described.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.

Grades 5-8

Science as Inquiry

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Earth and Space Science

Earth in the solar system

- The earth is the third planet from the sun in a system that includes the moon, the sun, eight other planets and their moons, and smaller objects, such as asteroids and comets. The sun, an average star, is the central and largest body in the solar system.
- Most objects in the solar system are in regular and predictable motion. Those motions explain such phenomena as the day, the year, phases of the moon, and eclipses.

History and Nature of Science

History of science

- In historical perspective, science has been practiced by different individuals in different cultures. In looking at the history of many peoples, one finds that scientists and engineers of high achievement are considered to be among the most valued contributors to their culture.

Grades 9-12

Science as Inquiry

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Physical Science

Structure of atoms

- Matter is made of minute particles called atoms, and atoms are composed of even smaller components. These components have measurable properties, such as mass and electrical charge. Each atom has a positively charged nucleus surrounded by negatively charged electrons. The electric force between the nucleus and electrons holds the atom together.

Structure and properties of matter

- An element is composed of a single type of atom. When elements are listed in order according to the number of protons (called the atomic number), repeating patterns of physical and chemical properties identify families of elements with similar properties. This "Periodic Table" is a consequence of the repeating pattern of outermost electrons and their permitted energies.
- Bonds between atoms are created when electrons are paired up by being transferred or shared. A substance composed of a single kind of atom is called an element. The atoms may be bonded together into molecules or crystalline solids. A compound is formed when two or more kinds of atoms bind together chemically.
- The physical properties of compounds reflect the nature of the interactions among its molecules. These interactions are determined by the structure of the molecule, including the constituent atoms and the distances and angles between them.

Earth and Space Science

The origin and evolution of the universe

- Early in the history of the universe, matter, primarily the light atoms hydrogen and helium, clumped together by gravitational attraction to form countless trillions of stars. Billions of galaxies, each of which is a gravitationally bound cluster of billions of stars, now form most of the visible mass in the universe.
- Stars produce energy from nuclear reactions, primarily the fusion of hydrogen to form helium. These and other processes in stars have led to the formation of all the other elements.

History and Nature of Science

Nature of scientific knowledge

- Science distinguishes itself from other ways of knowing and from other bodies of knowledge through the use of empirical standards, logical arguments, and skepticism, as scientists strive for the best possible explanations about the natural world.
- Because all scientific ideas depend on experimental and observational confirmation, all scientific knowledge is, in principle, subject to change as new evidence becomes available. The core ideas of science such as the conservation of energy or the laws of motion have been subjected to a wide variety of confirmations and are therefore unlikely to change in the areas in which they have been tested. In areas where data or understanding are incomplete, such as the details of human evolution or questions surrounding global warming, new data may well lead to changes in current ideas or resolve current conflicts. In situations where information is still fragmentary, it is normal for scientific ideas to be incomplete, but this is also where the opportunity for making advances may be greatest.

Historical perspectives

- Occasionally, there are advances in science and technology that have important and long-lasting effects on science and society. Examples of such advances include the following: Copernican revolution, Newtonian mechanics, relativity, geologic time scale, plate tectonics, atomic theory, nuclear physics, biological evolution, germ theory, Industrial revolution, molecular biology, information and communication, quantum theory, galactic universe, medical and health technology.
- The historical perspective of scientific explanations demonstrates how scientific knowledge changes by evolving over time, almost always building on earlier knowledge.

Patterns

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.

Life Science

The characteristics of organisms

- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

Science and Technology

Understandings about science and technology

- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct a scientific investigation.

Understandings about scientific inquiry

Different kinds of questions suggest different kinds of scientific investigations. Some
investigations involve observing and describing objects, organisms, or events; some
involve collecting specimens; some involve experiments; some involve seeking more
information; some involve discovery of new objects and phenomena; and some
involve making models.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct scientific investigations.

Understandings about scientific inquiry

Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Physical Science

Structure and properties of matter

- The physical properties of compounds reflect the nature of the interactions among its molecules. These interactions are determined by the structure of the molecule, including the constituent atoms and the distances and angles between them.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Phases of Matter

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

 Materials can exist in different states—solid, liquid, and gas. Some common materials, such as water, can be changed from one state to another by heating or cooling.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.

- Think critically and logically to make the relationships between evidence and explanations.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences.
 Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Many different people in different cultures have made and continue to make contributions to science and technology.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12 Science as Inquiry Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Physical Science

Structure of atoms

- Matter is made of minute particles called atoms, and atoms are composed of even smaller components. These components have measurable properties, such as mass and electrical charge. Each atom has a positively charged nucleus surrounded by negatively charged electrons. The electric force between the nucleus and electrons holds the atom together.

Structure and properties of matter

- Solids, liquids, and gases differ in the distances and angles between molecules or atoms and therefore the energy that binds them together. In solids the structure is nearly rigid; in liquids molecules or atoms move around each other but do not move apart; and in gases molecules or atoms move almost independently of each other and are mostly far apart.

Conservation of energy and the increase in disorder

- Heat consists of random motion and the vibrations of atoms, molecules, and ions. The higher the temperature, the greater the atomic or molecular motion.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Plants

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Light, heat, electricity, and magnetism

- Light travels in a straight line until it strikes an object. Light can be reflected by a mirror, refracted by a lens, or absorbed by the object.
- Heat can be produced in many ways, such as burning, rubbing, or mixing one substance with another. Heat can move from one object to another by conduction.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

Life cycles of organisms

- Plants and animals have life cycles that include being born, developing into adults, reproducing, and eventually dying. The details of this life cycle are different for different organisms.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.
- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.

Earth and Space Science

Properties of earth materials

 Earth materials are solid rocks and soils, water, and the gases of the atmosphere.
 The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

- Soils have properties of color and texture, capacity to retain water, and ability to support the growth of many kinds of plants, including those in our food supply.

Science and Technology

Understandings about science and technology

- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Science in Personal and Social Perspectives

Personal Health

- Nutrition is essential to health. Students should understand how the body uses food and how various foods contribute to health. Recommendations for good nutrition include eating a variety of foods, eating less sugar, and eating less fat.

Types of resources

- Resources are things that we get from the living and nonliving environment to meet the needs and wants of a population.
- Some resources are basic materials, such as air, water, and soil; some are produced from basic resources, such as food, fuel, and building materials; and some resources are nonmaterial, such as quiet places, beauty, security, and safety.

History and Nature of Science

Science as a human endeavor

Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data. Understandings about scientific inquiry
 - Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
 - Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
 - Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Physical Science

Properties of objects and materials

 Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers. - Materials can exist in different states—solid, liquid, and gas. Some common materials, such as water, can be changed from one state to another by heating or cooling.

Transfer of energy

In most chemical and nuclear reactions, energy is transferred into or out of a system. Heat, light, mechanical motion, or electricity might all be involved in such transfers.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.

Reproduction and heredity

- Reproduction is a characteristic of all living systems; because no individual organism lives forever, reproduction is essential to the continuation of every species. Some organisms reproduce asexually. Other organisms reproduce sexually.

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Populations and ecosystems

- Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.
- For ecosystems, the major source of energy is sunlight. Energy entering ecosystems as sunlight is transferred by producers into chemical energy through photosynthesis. That energy then passes from organism to organism in food webs.

Earth and Space Science

Structure of the earth system

- Living organisms have played many roles in the earth system, including affecting the composition of the atmosphere, producing some types of rocks, and contributing to the weathering of rocks.

Science in Personal and Social Perspectives

Personal health

- Food provides energy and nutrients for growth and development. Nutrition requirements vary with body weight, age, sex, activity, and body functioning.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and

creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

- Use technology and mathematics to improve investigations and communications. Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Physical Science

Chemical reactions

- Chemical reactions occur all around us, for example in health care, cooking, cosmetics, and automobiles. Complex chemical reactions involving carbon-based molecules take place constantly in every cell in our bodies.
- Chemical reactions may release or consume energy. Some reactions such as the burning of fossil fuels release large amounts of energy by losing heat and by emitting light. Light can initiate many chemical reactions such as photosynthesis and the evolution of urban smog.

Life Science

The cell

- Plant cells contain chloroplasts, the site of photosynthesis. Plants and many microorganisms use solar energy to combine molecules of carbon dioxide and water into complex, energy rich organic compounds and release oxygen to the environment. This process of photosynthesis provides a vital connection between the sun and the energy needs of living systems.

Behavior of organisms

- Plants also respond to stimuli.

Science in Personal and Social Perspectives

Personal and community health

- Selection of foods and eating patterns determine nutritional balance. Nutritional balance has a direct effect on growth and development and personal well-being. Personal and social factors—such as habits, family income, ethnic heritage, body size, advertising, and peer pressure—influence nutritional choices.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Pollution Solutions

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Organisms and their environments

- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.
- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.
- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Earth and Space Science

Properties of earth materials

 Earth materials are solid rocks and soils, water, and the gases of the atmosphere.
 The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.

Science in Personal and Social Perspectives

Types of resources

- Resources are things that we get from the living and nonliving environment to meet the needs and wants of a population.
- Some resources are basic materials, such as air, water, and soil; some are produced from basic resources, such as food, fuel, and building materials; and some resources are nonmaterial, such as quiet places, beauty, security, and safety.
- The supply of many resources is limited. If used, resources can be extended through recycling and decreased use.

Changes in environments

- Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.
- Changes in environments can be natural or influenced by humans. Some changes are good, some are bad, and some are neither good nor bad. Pollution is a change in the environment that can influence the health, survival, or activities of organisms, including humans.
- Some environmental changes occur slowly, and others occur rapidly. Students should understand the different consequences of changing environments in small increments over long periods as compared with changing environments in large increments over short periods.

Science and technology in local challenges

- People continue inventing new ways of doing things, solving problems, and getting work done. New ideas and inventions often affect other people; sometimes the effects are good and sometimes they are bad. It is helpful to try to determine in advance how ideas and inventions will affect other people.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.
- Think critically and logically to make the relationships between evidence and explanations.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.
- Substances react chemically in characteristic ways with other substances to form new substances (compounds) with different characteristic properties. In chemical reactions, the total mass is conserved. Substances often are placed in categories or groups if they react in similar ways; metals is an example of such a group.

Life Science

Structure and function in living systems

Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.

Populations and ecosystems

A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.

Earth and Space Science

Structure of the earth system

- Water is a solvent. As it passes through the water cycle it dissolves minerals and gases and carries them to the oceans.
- -The atmosphere is a mixture of nitrogen, oxygen, and trace gases that include water vapor. The atmosphere has different properties at different elevations.
- Fossils provide important evidence of how life and environmental conditions have changed.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Perfectly designed solutions do not exist. All technological solutions have trade-offs, such as safety, cost, efficiency, and appearance. Engineers often build in back-up systems to provide safety. Risk is part of living in a highly technological world. Reducing risk often results in new technology.
- Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.
- Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.

Science in Personal and Social Perspectives Personal health

- Natural environments may contain substances (for example, radon and lead) that are harmful to human beings. Maintaining environmental health involves establishing or monitoring quality standards related to use of soil, water, and air.

Populations, resources, and environments

- When an area becomes overpopulated, the environment will become degraded due to the increased use of resources.
- Causes of environmental degradation and resource depletion vary from region to region and from country to country.

Natural hazards

- Human activities also can induce hazards through resource acquisition, urban growth, land-use decisions, and waste disposal. Such activities can accelerate many natural changes.

Risks and benefits

- Risk analysis considers the type of hazard and estimates the number of people that might be exposed and the number likely to suffer consequences. The results are used to determine the options for reducing or eliminating risks.
- Students should understand the risks associated with natural hazards (fires, floods, tornadoes, hurricanes, earthquakes, and volcanic eruptions), with chemical hazards (pollutants in air, water, soil, and food), with biological hazards (pollen, viruses, bacterial, and parasites), social hazards (occupational safety and transportation), and with personal hazards (smoking, dieting, and drinking).

Science and technology in society

- Science influences society through its knowledge and world view. Scientific knowledge and the procedures used by scientists influence the way many individuals in society think about themselves, others, and the environment. The effect of science on society is neither entirely beneficial nor entirely detrimental.
- Technology influences society through its products and processes. Technology influences the quality of life and the ways people act and interact. Technological changes are often accompanied by social, political, and economic changes that can be beneficial or detrimental to individuals and to society. Social needs, attitudes, and values influence the direction of technological development.
- Science cannot answer all questions and technology cannot solve all human problems or meet all human needs. Students should understand the difference between scientific and other questions. They should appreciate what science and technology can reasonably contribute to society and what they cannot do. For example, new technologies often will decrease some risks and increase others.

History and Nature of Science

Science as a human endeavor

- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

- Formulate and revise scientific explanations and models using logic and evidence. Understandings about scientific inquiry

- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed

phenomena, or test the conclusions of prior investigations or the predictions of current theories.

- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Physical Science

Structure and properties of matter

- The physical properties of compounds reflect the nature of the interactions among its molecules. These interactions are determined by the structure of the molecule, including the constituent atoms and the distances and angles between them.
- Carbon atoms can bond to one another in chains, rings, and branching networks to form a variety of structures, including synthetic polymers, oils, and the large molecules essential to life.

Chemical reactions

- Chemical reactions occur all around us, for example in health care, cooking, cosmetics, and automobiles. Complex chemical reactions involving carbon-based molecules take place constantly in every cell in our bodies.
- Chemical reactions may release or consume energy. Some reactions such as the burning of fossil fuels release large amounts of energy by losing heat and by emitting light. Light can initiate many chemical reactions such as photosynthesis and the evolution of urban smog.
- A large number of important reactions involve the transfer of either electrons (oxidation/reduction reactions) or hydrogen ions (acid/base reactions) between reacting ions, molecules, or atoms. In other reactions, chemical bonds are broken by heat or light to form very reactive radicals with electrons ready to form new bonds. Radical reactions control many processes such as the presence of ozone and greenhouse gases in the atmosphere, burning and processing of fossil fuels, the formation of polymers, and explosions.

Conservation of energy and the increase in disorder

- Everything tends to become less organized and less orderly over time. Thus, in all energy transfers, the overall effect is that the energy is spread out uniformly. Examples are the transfer of energy from hotter to cooler objects by conduction, radiation, or convection and the warming of our surroundings when we burn fuels.

Life Science

Interdependence of organisms

- Organisms both cooperate and compete in ecosystems. The interrelationships and interdependencies of these organisms may generate ecosystems that are stable for hundreds or thousands of years.
- Living organisms have the capacity to produce populations of infinite size, but environments and resources are finite. This fundamental tension has profound effects on the interactions between organisms.
- Human beings live within the world's ecosystems. Increasingly, humans modify ecosystems as a result of population growth, technology, and consumption. Human destruction of habitats through direct harvesting, pollution, atmospheric changes, and other factors is threatening current global stability, and if not addressed, ecosystems will be irreversibly affected.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

Science in Personal and Social Perspectives

Natural resources

- Human populations use resources in the environment in order to maintain and improve their existence. Natural resources have been and will continue to be used to maintain human populations.
- The earth does not have infinite resources; increasing human consumption places severe stress on the natural processes that renew some resources, and it depletes those resources that cannot be renewed.
- Humans use many natural systems as resources. Natural systems have the capacity to reuse waste, but that capacity is limited. Natural systems can change to an extent that exceeds the limits of organisms to adapt naturally or humans to adapt technologically.

Environmental quality

- Natural ecosystems provide an array of basic processes that affect humans. Those processes include maintenance of the quality of the atmosphere, generation of soils, control of the hydrologic cycle, disposal of wastes, and recycling of nutrients. Humans are changing many of these basic processes, and the changes may be detrimental to humans.
- Materials from human societies affect both physical and chemical cycles of the earth.
- Many factors influence environmental quality. Factors that students might investigate include population growth, resource use, population distribution, overconsumption, the capacity of technology to solve problems, poverty, the role of economic, political, and religious views, and different ways humans view the earth.

Natural and human-induced hazards

- Human activities can enhance potential for hazards. Acquisition of resources, urban growth, and waste disposal can accelerate rates of natural change.
- Natural and human-induced hazards present the need for humans to assess potential danger and risk. Many changes in the environment designed by humans bring benefits to society, as well as cause risks. Students should understand the costs and trade-offs of various hazards—ranging from those with minor risk to a few people to major catastrophes with major risk to many people. The scale of events and the accuracy with which scientists and engineers can (and cannot) predict events are important considerations.

Science and technology in local, national, and global challenges

- Science and technology are essential social enterprises, but alone they can only indicate what can happen, not what should happen. The latter involves human decisions about the use of knowledge.
- Understanding basic concepts and principles of science and technology should precede active debate about the economics, policies, politics, and ethics of various science- and technology-related challenges. However, understanding science alone will not resolve local, national, or global challenges.
- Humans have a major effect on other species. For example, the influence of humans on other organisms occurs through land use—which decreases space available to other species—and pollution—which changes the chemical composition of air, soil, and water.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Populations

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Organisms and their environments

- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.
- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.

Science and Technology

Understandings about science and technology

- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.

Science in Personal and Social Perspectives

Characteristics and changes in populations

- Human populations include groups of individuals living in a particular location. One important characteristic of a human population is the population density—the number of individuals of a particular population that lives in a given amount of space.
- The size of a human population can increase or decrease. Populations will increase unless other factors such as disease or famine decrease the population.

Types of resources

- Resources are things that we get from the living and nonliving environment to meet the needs and wants of a population.

Changes in environments

- Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.
- Changes in environments can be natural or influenced by humans. Some changes are good, some are bad, and some are neither good nor bad. Pollution is a change in the

environment that can influence the health, survival, or activities of organisms, including humans.

- Some environmental changes occur slowly, and others occur rapidly. Students should understand the different consequences of changing environments in small increments over long periods as compared with changing environments in large increments over short periods.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

- Use appropriate tools and techniques to gather, analyze, and interpret data. Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Life Science

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.
- The number of organisms an ecosystem can support depends on the resources available and abiotic factors, such as quantity of light and water, range of temperatures, and soil composition. Given adequate biotic and abiotic resources and no disease or predators, populations (including humans) increase at rapid rates. Lack of resources and other factors, such as predation and climate, limit the growth of populations in specific niches in the ecosystem.

Science in Personal and Social Perspectives

- Populations, resources, and environments
 - When an area becomes overpopulated, the environment will become degraded due to the increased use of resources.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists. - Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Life Science

Interdependence of organisms

- Living organisms have the capacity to produce populations of infinite size, but environments and resources are finite. This fundamental tension has profound effects on the interactions between organisms.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Pressure

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Communicate investigations and explanations.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Develop descriptions, explanations, predictions, and models using evidence.
- Communicate scientific procedures and explanations.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Probability

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Science and Technology

Understandings about science and technology

- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use mathematics in all aspects of scientific inquiry.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Mathematics is important in all aspects of scientific inquiry.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

- Use technology and mathematics to improve investigations and communications. Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Pseudoscience

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.
- Scientists make the results of their investigations public; they describe the investigations in ways that enable others to repeat the investigations.
- Scientists review and ask questions about the results of other scientists' work.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.

Science and Technology

Understandings about science and technology

• People have always had questions about their world. Science is one way of answering questions and explaining the natural world.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Although men and women using scientific inquiry have learned much about the objects, events, and phenomena in nature, much more remains to be understood. Science will never be finished.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.
- Think critically and logically to make the relationships between evidence and explanations.
- Recognize and analyze alternative explanations and predictions.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some

involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.
- Science advances through legitimate skepticism. Asking questions and querying other scientists' explanations is part of scientific inquiry. Scientists evaluate the explanations proposed by other scientists by examining evidence, comparing evidence, identifying faulty reasoning, pointing out statements that go beyond the evidence, and suggesting alternative explanations for the same observations.

History and Nature of Science

Science as a human endeavor

- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.
- In areas where active research is being pursued and in which there is not a great deal of experimental or observational evidence and understanding, it is normal for scientists to differ with one another about the interpretation of the evidence or theory being considered. Different scientists might publish conflicting experimental results or might draw different conclusions from the same data. Ideally, scientists acknowledge such conflict and work towards finding evidence that will resolve their disagreement.
- It is part of scientific inquiry to evaluate the results of scientific investigations, experiments, observations, theoretical models, and the explanations proposed by other scientists. Evaluation includes reviewing the experimental procedures, examining the evidence, identifying faulty reasoning, pointing out statements that go beyond the evidence, and suggesting alternative explanations for the same observations. Although scientists may disagree about explanations of phenomena, about interpretations of data, or about the value of rival theories, they do agree that questioning, response to criticism, and open communication are integral to the process of science. As scientific knowledge evolves, major disagreements are eventually resolved through such interactions between scientists.

History of science

- Tracing the history of science can show how difficult it was for scientific innovators to break through the accepted ideas of their time to reach the conclusions that we currently take for granted.

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.
- Communicate and defend a scientific argument.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to questions and possible modification; and it must be based on historical and current scientific knowledge.
- Results of scientific inquiry—new knowledge and methods—emerge from different types of investigations and public communication among scientists. In communicating and defending the results of scientific inquiry, arguments must be logical and demonstrate connections between natural phenomena, investigations, and the historical body of scientific knowledge. In addition, the methods and procedures that scientists used to obtain evidence must be clearly reported to enhance opportunities for further investigation.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

History and Nature of Science

Science as a human endeavor

- Scientists are influenced by societal, cultural, and personal beliefs and ways of viewing the world. Science is not separate from society but rather science is a part of society.

Nature of scientific knowledge

- Science distinguishes itself from other ways of knowing and from other bodies of knowledge through the use of empirical standards, logical arguments, and skepticism, as scientists strive for the best possible explanations about the natural world.
- Scientific explanations must meet certain criteria. First and foremost, they must be consistent with experimental and observational evidence about nature, and must make accurate predictions, when appropriate, about systems being studied. They should also be logical, respect the rules of evidence, be open to criticism, report methods and procedures, and make knowledge public. Explanations on how the

natural world changes based on myths, personal beliefs, religious values, mystical inspiration, superstition, or authority may be personally useful and socially relevant, but they are not scientific.

- Because all scientific ideas depend on experimental and observational confirmation, all scientific knowledge is, in principle, subject to change as new evidence becomes available. The core ideas of science such as the conservation of energy or the laws of motion have been subjected to a wide variety of confirmations and are therefore unlikely to change in the areas in which they have been tested. In areas where data or understanding are incomplete, such as the details of human evolution or questions surrounding global warming, new data may well lead to changes in current ideas or resolve current conflicts. In situations where information is still fragmentary, it is normal for scientific ideas to be incomplete, but this is also where the opportunity for making advances may be greatest.

Reptiles

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Life cycles of organisms

- Plants and animals have life cycles that include being born, developing into adults, reproducing, and eventually dying. The details of this life cycle are different for different organisms.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.

Science in Personal and Social Perspectives

Personal health

- Different substances can damage the body and how it functions. Such substances include tobacco, alcohol, over-the-counter medicines, and illicit drugs. Students should understand that some substances, such as prescription drugs, can be beneficial, but that any substance can be harmful if used inappropriately.

Changes in environments

- Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

- Use appropriate tools and techniques to gather, analyze, and interpret data.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.

Reproduction and heredity

- In many species, including humans, females produce eggs and males produce sperm. Plants also reproduce sexually—the egg and sperm are produced in the flowers of flowering plants. An egg and sperm unite to begin development of a new individual. That new individual receives genetic information from its mother (via the egg) and its father (via the sperm). Sexually produced offspring never are identical to either of their parents.

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.
- Regulation of an organism's internal environment involves sensing the internal environment and changing physiological activities to keep conditions within the range required to survive.
- Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Populations and ecosystems

- Populations of organisms can be categorized by the function they serve in an ecosystem. Plants and some micro-organisms are producers—they make their own food. All animals, including humans, are consumers, which obtain food by eating other organisms. Decomposers, primarily bacteria and fungi, are consumers that use

waste materials and dead organisms for food. Food webs identify the relationships among producers, consumers, and decomposers in an ecosystem.

Diversity and adaptations of organisms

- Biological evolution accounts for the diversity of species developed through gradual processes over many generations. Species acquire many of their unique characteristics through biological adaptation, which involves the selection of naturally occurring variations in populations. Biological adaptations include changes in structures, behaviors, or physiology that enhance survival and reproductive success in a particular environment.
- Extinction of a species occurs when the environment changes and the adaptive characteristics of a species are insufficient to allow its survival. Fossils indicate that many organisms that lived long ago are extinct. Extinction of species is common; most of the species that have lived on the earth no longer exist.

Science in Personal and Social Perspectives

Science and technology in society

- Scientists and engineers work in many different settings, including colleges and universities, businesses and industries, specific research institutes, and government agencies.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Life Science

Biological evolution

- The great diversity of organisms is the result of more than 3.5 billion years of evolution that has filled every available niche with life forms.
- Biological classifications are based on how organisms are related. Organisms are classified into a hierarchy of groups and subgroups based on similarities which reflect their evolutionary relationships. Species is the most fundamental unit of classification.

Interdependence of organisms

- Organisms both cooperate and compete in ecosystems. The interrelationships and interdependencies of these organisms may generate ecosystems that are stable for hundreds or thousands of years.

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.
- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Historical perspectives

- Usually, changes in science occur as small modifications in extant knowledge. The daily work of science and engineering results in incremental advances in our understanding of the world and our ability to meet human needs and aspirations. Much can be learned about the internal workings of science and the nature of science from study of individual scientists, their daily work, and their efforts to advance scientific knowledge in their area of study.

Respiration

Građes K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.
- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.
- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.
- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily

on teams working together and secondarily, on the combination of scientist and engineer teams.

- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Abilities to distinguish between natural objects and objects made by humans

- Some objects occur in nature; others have been designed and made by people to solve human problems and enhance the quality of life.
- Objects can be categorized into two groups, natural and designed.

Science in Personal and Social Perspectives

Personal health

- Individuals have some responsibility for their own health. Students should engage in personal care—dental hygiene, cleanliness, and exercise—that will maintain and improve health. Understandings include how communicable diseases, such as colds, are transmitted and some of the body's defense mechanisms that prevent or overcome illness.
- Different substances can damage the body and how it functions. Such substances include tobacco, alcohol, over-the-counter medicines, and illicit drugs. Students should understand that some substances, such as prescription drugs, can be beneficial, but that any substance can be harmful if used inappropriately.

Types of resources

- Some resources are basic materials, such as air, water, and soil; some are produced from basic resources, such as food, fuel, and building materials; and some resources are nonmaterial, such as quiet places, beauty, security, and safety.
- The supply of many resources is limited. If used, resources can be extended through recycling and decreased use.

History and Nature of Science

Science as a human endeavor

- Men and women have made a variety of contributions throughout the history of science and technology.
- Although men and women using scientific inquiry have learned much about the objects, events, and phenomena in nature, much more remains to be understood. Science will never be finished.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- Cells carry on the many functions needed to sustain life. They grow and divide, thereby producing more cells. This requires that they take in nutrients, which they use

to provide energy for the work that cells do and to make the materials that a cell or an organism needs.

- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.
- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection from disease. These systems interact with one another.
- Disease is a breakdown in structures or functions of an organism. Some diseases are the result of intrinsic failures of the system. Others are the result of damage by infection by other organisms.

Science in Personal and Social Perspectives

Personal health

- Regular exercise is important to the maintenance and improvement of health. The benefits of physical fitness include maintaining healthy weight, having energy and strength for routine activities, good muscle tone, bone strength, strong heart/lung systems, and improved mental health. Personal exercise, especially developing cardiovascular endurance, is the foundation of physical fitness.
- The use of tobacco increases the risk of illness. Students should understand the influence of short-term social and psychological factors that lead to tobacco use, and the possible long-term detrimental effects of smoking and chewing tobacco.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

- Use technology and mathematics to improve investigations and communications. Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Life Science

The cell

- Cells have particular structures that underlie their functions. Every cell is surrounded by a membrane that separates it from the outside world. Inside the cell is a concentrated mixture of thousands of different molecules which form a variety of specialized structures that carry out such cell functions as energy production, transport of molecules, waste disposal, synthesis of new molecules, and the storage of genetic material.
- Most cell functions involve chemical reactions. Food molecules taken into cells react to provide the chemical constituents needed to synthesize other molecules. Both breakdown and synthesis are made possible by a large set of protein catalysts, called enzymes. The breakdown of some of the food molecules enables the cell to store energy in specific chemicals that are used to carry out the many functions of the cell.

Matter, energy, and organization in living systems

- The chemical bonds of food molecules contain energy. Energy is released when the bonds of food molecules are broken and new compounds with lower energy bonds are formed. Cells usually store this energy temporarily in phosphate bonds of a small high-energy compound called ATP.
- As matter and energy flows through different levels of organization of living systems—cells, organs, organisms, communities—and between living systems and the physical environment, chemical elements are recombined in different ways. Each recombination results in storage and dissipation of energy into the environment as heat. Matter and energy are conserved in each change.

Science in Personal and Social Perspectives

Science and technology in local, national, and global challenges

- Humans have a major effect on other species. For example, the influence of humans on other organisms occurs through land use—which decreases space available to other species—and pollution—which changes the chemical composition of air, soil, and water.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Rivers and Streams

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.

Organisms and their environments

- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.
- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.
- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.
- Soils have properties of color and texture, capacity to retain water, and ability to support the growth of many kinds of plants, including those in our food supply.

Changes in the earth and sky

- The surface of the earth changes. Some changes are due to slow processes, such as erosion and weathering, and some changes are due to rapid processes, such as landslides, volcanic eruptions, and earthquakes.

Science and Technology

Understandings about science and technology

People have always had questions about their world. Science is one way of answering questions and explaining the natural world.

Science in Personal and Social Perspectives

Types of resources

- Resources are things that we get from the living and nonliving environment to meet the needs and wants of a population.
- Some resources are basic materials, such as air, water, and soil; some are produced from basic resources, such as food, fuel, and building materials; and some resources are nonmaterial, such as quiet places, beauty, security, and safety.
- The supply of many resources is limited. If used, resources can be extended through recycling and decreased use.

Changes in environments

- Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.
- Changes in environments can be natural or influenced by humans. Some changes are good, some are bad, and some are neither good nor bad. Pollution is a change in the environment that can influence the health, survival, or activities of organisms, including humans.
- Some environmental changes occur slowly, and others occur rapidly. Students should understand the different consequences of changing environments in small increments over long periods as compared with changing environments in large increments over short periods.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.
- Men and women have made a variety of contributions throughout the history of science and technology.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

Life Science

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.

Earth and Space Science

Structure of the earth system

- Land forms are the result of a combination of constructive and destructive forces. Constructive forces include crustal deformation, volcanic eruption, and deposition of sediment, while destructive forces include weathering and erosion.
- Soil consists of weathered rocks and decomposed organic material from dead plants, animals, and bacteria. Soils are often found in layers, with each having a different chemical composition and texture.
- Water, which covers the majority of the earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the "water cycle." Water evaporates from the earth's surface, rises and cools as it moves to higher elevations, condenses as rain or snow, and falls to the surface where it collects in lakes, oceans, soil, and in rocks underground.
- Water is a solvent. As it passes through the water cycle it dissolves minerals and gases and carries them to the oceans.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Many different people in different cultures have made and continue to make contributions to science and technology.
- Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.

Science in Personal and Social Perspectives

Personal health

- Natural environments may contain substances (for example, radon and lead) that are harmful to human beings. Maintaining environmental health involves establishing or monitoring quality standards related to use of soil, water, and air.

Populations, resources, and environments

- Causes of environmental degradation and resource depletion vary from region to region and from country to country.
- Natural hazards
 - Human activities also can induce hazards through resource acquisition, urban growth, land-use decisions, and waste disposal. Such activities can accelerate many natural changes.

Risks and benefits

- Students should understand the risks associated with natural hazards (fires, floods, tornadoes, hurricanes, earthquakes, and volcanic eruptions), with chemical hazards (pollutants in air, water, soil, and food), with biological hazards (pollen, viruses, bacterial, and parasites), social hazards (occupational safety and transportation), and with personal hazards (smoking, dieting, and drinking).

Science and technology in society

- Science influences society through its knowledge and world view. Scientific knowledge and the procedures used by scientists influence the way many individuals in society think about themselves, others, and the environment. The effect of science on society is neither entirely beneficial nor entirely detrimental.
- Technology influences society through its products and processes. Technology influences the quality of life and the ways people act and interact. Technological changes are often accompanied by social, political, and economic changes that can be beneficial or detrimental to individuals and to society. Social needs, attitudes, and values influence the direction of technological development.
- Science and technology have advanced through contributions of many different people, in different cultures, at different times in history. Science and technology have contributed enormously to economic growth and productivity among societies and groups within societies.
- Science cannot answer all questions and technology cannot solve all human problems or meet all human needs. Students should understand the difference between scientific and other questions. They should appreciate what science and technology can reasonably contribute to society and what they cannot do. For example, new technologies often will decrease some risks and increase others.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to questions and possible modification; and it must be based on historical and current scientific knowledge.

Life Science

Interdependence of organisms

- Organisms both cooperate and compete in ecosystems. The interrelationships and interdependencies of these organisms may generate ecosystems that are stable for hundreds or thousands of years.
- Living organisms have the capacity to produce populations of infinite size, but environments and resources are finite. This fundamental tension has profound effects on the interactions between organisms.
- Human beings live within the world's ecosystems. Increasingly, humans modify ecosystems as a result of population growth, technology, and consumption. Human destruction of habitats through direct harvesting, pollution, atmospheric changes, and other factors is threatening current global stability, and if not addressed, ecosystems will be irreversibly affected.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.

Science in Personal and Social Perspectives

Population growth

- Populations grow or decline through the combined effects of births and deaths, and through emigration and immigration. Populations can increase through linear or exponential growth, with effects on resource use and environmental pollution.

Environmental quality

- Natural ecosystems provide an array of basic processes that affect humans. Those processes include maintenance of the quality of the atmosphere, generation of soils, control of the hydrologic cycle, disposal of wastes, and recycling of nutrients. Humans are changing many of these basic processes, and the changes may be detrimental to humans.
- Materials from human societies affect both physical and chemical cycles of the earth.
- Many factors influence environmental quality. Factors that students might investigate include population growth, resource use, population distribution, overconsumption, the capacity of technology to solve problems, poverty, the role of economic, political, and religious views, and different ways humans view the earth.

Natural and human-induced hazards

- Some hazards, such as earthquakes, volcanic eruptions, and severe weather, are rapid and spectacular. But there are slow and progressive changes that also result in problems for individuals and societies. For example, change in stream channel position, erosion of bridge foundations, sedimentation in lakes and harbors, coastal erosions, and continuing erosion and wasting of soil and landscapes can all negatively affect society.
- Natural and human-induced hazards present the need for humans to assess potential danger and risk. Many changes in the environment designed by humans bring benefits to society, as well as cause risks. Students should understand the costs and trade-offs of various hazards—ranging from those with minor risk to a few people to major catastrophes with major risk to many people. The scale of

events and the accuracy with which scientists and engineers can (and cannot) predict events are important considerations.

Science and technology in local, national, and global challenges

- Humans have a major effect on other species. For example, the influence of humans on other organisms occurs through land use—which decreases space available to other species—and pollution—which changes the chemical composition of air, soil, and water.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Rocks and Soil

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.
- Soils have properties of color and texture, capacity to retain water, and ability to support the growth of many kinds of plants, including those in our food supply.

Changes in the earth and sky

- The surface of the earth changes. Some changes are due to slow processes, such as erosion and weathering, and some changes are due to rapid processes, such as landslides, volcanic eruptions, and earthquakes.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.

History and Nature of Science

Science as a human endeavor

- Science and technology have been practiced by people for a long time.

- Men and women have made a variety of contributions throughout the history of science and technology.
- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.
- Think critically and logically to make the relationships between evidence and explanations.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

Transfer of energy

- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.

Earth and Space Science

Structure of the earth system

- The solid earth is layered with a lithosphere; hot, convecting mantle; and dense, metallic core.
- Lithospheric plates on the scales of continents and oceans constantly move at rates of centimeters per year in response to movements in the mantle. Major geological events, such as earthquakes, volcanic eruptions, and mountain building, result from these plate motions.
- Land forms are the result of a combination of constructive and destructive forces. Constructive forces include crustal deformation, volcanic eruption, and deposition of sediment, while destructive forces include weathering and erosion.
- Some changes in the solid earth can be described as the "rock cycle." Old rocks at the earth's surface weather, forming sediments that are buried, then compacted, heated, and often recrystallized into new rock. Eventually, those new rocks may be brought to the surface by the forces that drive plate motions, and the rock cycle continues.
- Soil consists of weathered rocks and decomposed organic material from dead plants, animals, and bacteria. Soils are often found in layers, with each having a different chemical composition and texture.
- Water is a solvent. As it passes through the water cycle it dissolves minerals and gases and carries them to the oceans.

- Living organisms have played many roles in the earth system, including affecting the composition of the atmosphere, producing some types of rocks, and contributing to the weathering of rocks.

Earth's history

- The earth processes we see today, including erosion, movement of lithospheric plates, and changes in atmospheric composition, are similar to those that occurred in the past. Earth history is also influenced by occasional catastrophes, such as the impact of an asteroid or comet.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods

to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Physical Science

Structure and properties of matter

- The physical properties of compounds reflect the nature of the interactions among its molecules. These interactions are determined by the structure of the molecule, including the constituent atoms and the distances and angles between them.
- Bonds between atoms are created when electrons are paired up by being transferred or shared. A substance composed of a single kind of atom is called an element. The atoms may be bonded together into molecules or crystalline solids. A compound is formed when two or more kinds of atoms bind together chemically
- Solids, liquids, and gases differ in the distances and angles between molecules or atoms and therefore the energy that binds them together. In solids the structure is nearly rigid; in liquids molecules or atoms move around each other but do not move apart; and in gases molecules or atoms move almost independently of each other and are mostly far apart.

Earth and Space Science

Energy in the earth system

- Earth systems have internal and external sources of energy, both of which create heat. The sun is the major external source of energy. Two primary sources of internal energy are the decay of radioactive isotopes and the gravitational energy from the earth's original formation.

- The outward transfer of earth's internal heat drives convection circulation in the mantle that propels the plates comprising earth's surface across the face of the globe. Geochemical cycles

- Movement of matter between reservoirs is driven by the earth's internal and external sources of energy. These movements are often accompanied by a change in the physical and chemical properties of the matter. Carbon, for example, occurs in carbonate rocks such as limestone, in the atmosphere as carbon dioxide gas, in water as dissolved carbon dioxide, and in all organisms as complex molecules that control the chemistry of life.

The origin and evolution of the earth system

- Interactions among the solid earth, the oceans, the atmosphere, and organisms have resulted in the ongoing evolution of the earth system. We can observe some changes such as earthquakes and volcanic eruptions on a human time scale, but many processes such as mountain building and plate movements take place over hundreds of millions of years.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Simple Machines

Grades K-4 Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Physical Science

Position and motion of objects

- The position of an object can be described by locating it relative to another object or the background.
- The position and motion of objects can be changed by pushing or pulling. The size of the change is related to the strength of the push or pull.

Science and Technology

Abilities of technological design

- Identify a simple problem.
- Propose a solution.
- Implementing proposed solutions.

Understandings about science and technology

- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

Design and conduct a scientific investigation.

Physical Science

Motions and forces

- The motion of an object can be described by its position, direction of motion, and speed. That motion can be measured and represented on a graph.

Science and Technology

Abilities of technological design

- Design a solution or product.
- Implement a proposed design.
- Communicate the process of technological design.

Science in Personal and Social Perspectives

Science and technology in society

- Societal challenges often inspire questions for scientific research, and social priorities often influence research priorities through the availability of funding for research.
- Technology influences society through its products and processes. Technology influences the quality of life and the ways people act and interact. Technological changes are often accompanied by social, political, and economic changes that can be beneficial or detrimental to individuals and to society. Social needs, attitudes, and values influence the direction of technological development.

- Scientists and engineers work in many different settings, including colleges and universities, businesses and industries, specific research institutes, and government agencies.

Grades 9-12

Science as Inquiry

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.

Physical Science

Motions and forces

- Objects change their motion only when a net force is applied. Laws of motion are used to calculate precisely the effects of forces on the motion of objects. The magnitude of the change in motion can be calculated using the relationship F = ma, which is independent of the nature of the force. Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object.

Science and Technology

- Abilities of technological design
 - Implement a proposed solution.
 - Communicate the problem, process, and solution.
- Understandings about science and technology
 - Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
 - Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Skin

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Light, heat, electricity, and magnetism

Light travels in a straight line until it strikes an object. Light can be reflected by a mirror, refracted by a lens, or absorbed by the object.

Life Science

The characteristics of organisms

- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Life cycles of organisms

- Plants and animals closely resemble their parents.
- Many characteristics of an organism are inherited from the parents of the organism, but other characteristics result from an individual's interactions with the environment. Inherited characteristics include the color of flowers and the number of limbs of an animal. Other features, such as the ability to ride a bicycle, are learned through interactions with the environment and cannot be passed on to the next generation.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.

Science in Personal and Social Perspectives

Personal health

- Safety and security are basic needs of humans. Safety involves freedom from danger, risk, or injury. Security involves feelings of confidence and lack of anxiety and fear. Student understandings include following safety rules for home and school, preventing abuse and neglect, avoiding injury, knowing whom to ask for help, and when and how to say no.
- Individuals have some responsibility for their own health. Students should engage in personal care—dental hygiene, cleanliness, and exercise—that will maintain and improve health. Understandings include how communicable diseases, such as colds, are transmitted and some of the body's defense mechanisms that prevent or overcome illness.

History and Nature of Science

Science as a human endeavor

Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Physical Science

Transfer of energy

- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.
- Light interacts with matter by transmission (including refraction), absorption, or scattering (including reflection). To see an object, light from that object—emitted by or scattered from it—must enter the eye.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.

- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection from disease. These systems interact with one another.

Reproduction and heredity

- Hereditary information is contained in genes, located in the chromosomes of each cell. Each gene carries a single unit of information. An inherited trait of an individual can be determined by one or by many genes, and a single gene can influence more than one trait. A human cell contains many thousands of different genes.
- The characteristics of an organism can be described in terms of a combination of traits. Some traits are inherited and others result from interactions with the environment.

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.
- Regulation of an organism's internal environment involves sensing the internal environment and changing physiological activities to keep conditions within the range required to survive.
- Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences.
 Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Many different people in different cultures have made and continue to make contributions to science and technology.
- Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.
- Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.

Science in Personal and Social Perspectives

Personal health

- The potential for accidents and the existence of hazards imposes the need for injury prevention. Safe living involves the development and use of safety precautions and the recognition of risk in personal decisions. Injury prevention has personal and social dimensions.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science,

engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

- Use technology and mathematics to improve investigations and communications. Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Physical Science

Interactions of energy and matter

- Waves, including sound and seismic waves, waves on water, and light waves, have energy and can transfer energy when they interact with matter.

Life Science

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.
- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change.

Science and Technology

Understandings about science and technology

Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by

its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

Science in Personal and Social Perspectives

Personal and community health

Personal choice concerning fitness and health involves multiple factors. Personal goals, peer and social pressures, ethnic and religious beliefs, and understanding of biological consequences can all influence decisions about health practices.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Smell

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Physical Science

Properties of objects and materials

 Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Life Science

Structure and function in living systems

- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.

Physical Science

Chemical reactions

Chemical reactions occur all around us, for example in health care, cooking, cosmetics, and automobiles. Complex chemical reactions involving carbon-based molecules take place constantly in every cell in our bodies.

Life Science

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.
- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change. Plants also respond to stimuli.

Science and Technology

Understandings about science and technology

 Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.

Sound

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Position and motion of objects

- The position of an object can be described by locating it relative to another object or the background.
- Sound is produced by vibrating objects. The pitch of the sound can be varied by changing the rate of vibration.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct a scientific investigation.
- Develop descriptions, explanations, predictions, and models using evidence.

Physical Science

Motions and forces

- The motion of an object can be described by its position, direction of motion, and speed. That motion can be measured and represented on a graph. Transfer of energy
- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.

Physical Science

Interactions of energy and matter

- Waves, including sound and seismic waves, waves on water, and light waves, have energy and can transfer energy when they interact with matter.

Life Science

Behavior of organisms

- Multicellular animals have nervous systems that generate behavior. Nervous systems are formed from specialized cells that conduct signals rapidly through the long cell extensions that make up nerves. The nerve cells communicate with each other by secreting specific excitatory and inhibitory molecules. In sense organs, specialized cells detect light, sound, and specific chemicals and enable animals to monitor what is going on in the world around them.

Space Exploration

Grades K-4 Science as Inquiry

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

 Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.

Position and motion of objects

- The position of an object can be described by locating it relative to another object or the background.
- An object's motion can be described by tracing and measuring its position over time.
- The position and motion of objects can be changed by pushing or pulling. The size of the change is related to the strength of the push or pull.

Light, heat, electricity, and magnetism

- Light travels in a straight line until it strikes an object. Light can be reflected by a mirror, refracted by a lens, or absorbed by the object.

Earth and Space Science

Objects in the sky

- The sun, moon, stars, clouds, birds, and airplanes all have properties, locations, and movements that can be observed and described.

Changes in the earth and sky

- Objects in the sky have patterns of movement. The sun, for example, appears to move across the sky in the same way every day, but its path changes slowly over the seasons. The moon moves across the sky on a daily basis much like the sun. The observable shape of the moon changes from day to day in a cycle that lasts about a month.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.

- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Grades 5-8

Science as Inquiry

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Mathematics is important in all aspects of scientific inquiry.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.
- Scientific investigations sometimes result in new ideas and phenomena for study, generate new methods or procedures for an investigation, or develop new technologies to improve the collection of data. All of these results can lead to new investigations.

Physical Science

Motions and forces

- The motion of an object can be described by its position, direction of motion, and speed. That motion can be measured and represented on a graph.
- An object that is not being subjected to a force will continue to move at a constant speed and in a straight line.
- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.
- In most chemical and nuclear reactions, energy is transferred into or out of a system. Heat, light, mechanical motion, or electricity might all be involved in such transfers.

Earth and Space Science

Earth in the solar system

- Most objects in the solar system are in regular and predictable motion. Those motions explain such phenomena as the day, the year, phases of the moon, and eclipses.
- Gravity is the force that keeps planets in orbit around the sun and governs the rest of the motion in the solar system. Gravity alone holds us to the earth's surface and explains the phenomena of the tides.

Science and Technology

Understandings about science and technology

Scientific inquiry and technological design have similarities and differences.
 Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological

solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.

- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Physical Science

Structure and properties of matter

- The physical properties of compounds reflect the nature of the interactions among its molecules. These interactions are determined by the structure of the molecule, including the constituent atoms and the distances and angles between them.

Chemical reactions

- Chemical reactions may release or consume energy. Some reactions such as the burning of fossil fuels release large amounts of energy by losing heat and by emitting

light. Light can initiate many chemical reactions such as photosynthesis and the evolution of urban smog.

Motions and forces

- Objects change their motion only when a net force is applied. Laws of motion are used to calculate precisely the effects of forces on the motion of objects. The magnitude of the change in motion can be calculated using the relationship F = ma, which is independent of the nature of the force. Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object.
- Gravitation is a universal force that each mass exerts on any other mass. The strength of the gravitational attractive force between two masses is proportional to the masses and inversely proportional to the square of the distance between them.

Conservation of energy and the increase in disorder

- Heat consists of random motion and the vibrations of atoms, molecules, and ions. The higher the temperature, the greater the atomic or molecular motion.

Interactions of energy and matter

- In some materials, such as metals, electrons flow easily, whereas in insulating materials such as glass they can hardly flow at all. Semiconducting materials have intermediate behavior. At low temperatures some materials become superconductors and offer no resistance to the flow of electrons.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Spiders

*G*rades K-4

Science as Inquiry

Understandings about scientific inquiry

Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Life cycles of organisms

- Plants and animals have life cycles that include being born, developing into adults, reproducing, and eventually dying. The details of this life cycle are different for different organisms.
- Plants and animals closely resemble their parents.
- Many characteristics of an organism are inherited from the parents of the organism, but other characteristics result from an individual's interactions with the environment. Inherited characteristics include the color of flowers and the number of limbs of an animal. Other features, such as the ability to ride a bicycle, are learned through interactions with the environment and cannot be passed on to the next generation.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.
- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.

History and Nature of Science

Science as a human endeavor

Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Understandings about scientific inquiry

Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.
- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.

Regulation and behavior

- All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.

Populations and ecosystems

- The number of organisms an ecosystem can support depends on the resources available and abiotic factors, such as quantity of light and water, range of temperatures, and soil composition. Given adequate biotic and abiotic resources and no disease or predators, populations (including humans) increase at rapid rates. Lack of resources and other factors, such as predation and climate, limit the growth of populations in specific niches in the ecosystem.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Understandings about scientific inquiry

Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists. Physical Science

Life Science

Interdependence of organisms

- Living organisms have the capacity to produce populations of infinite size, but environments and resources are finite. This fundamental tension has profound effects on the interactions between organisms.

Behavior of organisms

- Organisms have behavioral responses to internal changes and to external stimuli. Responses to external stimuli can result from interactions with the organism's own species and others, as well as environmental changes; these responses either can be innate or learned. The broad patterns of behavior exhibited by animals have evolved to ensure reproductive success. Animals often live in unpredictable environments, and so their behavior must be flexible enough to deal with uncertainty and change. Plants also respond to stimuli.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Spinning Things

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Position and motion of objects

- The position of an object can be described by locating it relative to another object or the background.
- An object's motion can be described by tracing and measuring its position over time.
- The position and motion of objects can be changed by pushing or pulling. The size of the change is related to the strength of the push or pull.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Scientists and engineers often work in teams with different individuals doing different things that contribute to the results. This understanding focuses primarily on teams working together and secondarily, on the combination of scientist and engineer teams.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Understandings about scientific inquiry
 - Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Physical Science

Motions and forces

- The motion of an object can be described by its position, direction of motion, and speed. That motion can be measured and represented on a graph.
- An object that is not being subjected to a force will continue to move at a constant speed and in a straight line.
- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

Earth and Space Science

Earth in the solar system

- Gravity is the force that keeps planets in orbit around the sun and governs the rest of the motion in the solar system. Gravity alone holds us to the earth's surface and explains the phenomena of the tides.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.

History and Nature of Science

Nature of science

Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.

- Design and conduct scientific investigations.
- Understandings about scientific inquiry
 - Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
 - Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.

Physical Science

Motions and forces

- Objects change their motion only when a net force is applied. Laws of motion are used to calculate precisely the effects of forces on the motion of objects. The magnitude of the change in motion can be calculated using the relationship F = ma, which is independent of the nature of the force. Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object.
- Gravitation is a universal force that each mass exerts on any other mass. The strength of the gravitational attractive force between two masses is proportional to the masses and inversely proportional to the square of the distance between them.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Static Electricity

Grades K-4 Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Communicate investigations and explanations.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.

Light, heat, electricity, and magnetism

- Heat can be produced in many ways, such as burning, rubbing, or mixing one substance with another. Heat can move from one object to another by conduction.
- Electricity in circuits can produce light, heat, sound, and magnetic effects. Electrical circuits require a complete loop through which an electrical current can pass.
- Magnets attract and repel each other and certain kinds of other materials.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Develop descriptions, explanations, predictions, and models using evidence.
- Communicate scientific procedures and explanations.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

Physical Science

Properties and changes of properties in matter

A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.
- Light interacts with matter by transmission (including refraction), absorption, or scattering (including reflection). To see an object, light from that object—emitted by or scattered from it—must enter the eye.
- Electrical circuits provide a means of transferring electrical energy when heat, light, sound, and chemical changes are produced.
- In most chemical and nuclear reactions, energy is transferred into or out of a system. Heat, light, mechanical motion, or electricity might all be involved in such transfers.

Grades 9-12

Physical Science

Structure of atoms

- Matter is made of minute particles called atoms, and atoms are composed of even smaller components. These components have measurable properties, such as mass and electrical charge. Each atom has a positively charged nucleus surrounded by negatively charged electrons. The electric force between the nucleus and electrons holds the atom together.

Structure and properties of matter

- Atoms interact with one another by transferring or sharing electrons that are furthest from the nucleus. These outer electrons govern the chemical properties of the element.

Motions and forces

- The electric force is a universal force that exists between any two charged objects. Opposite charges attract while like charges repel. The strength of the force is proportional to the charges, and, as with gravitation, inversely proportional to the square of the distance between them.
- Between any two charged particles, electric force is vastly greater than the gravitational force. Most observable forces such as those exerted by a coiled spring or friction may be traced to electric forces acting between atoms and molecules.
- Electricity and magnetism are two aspects of a single electromagnetic force. Moving electric charges produce magnetic forces, and moving magnets produce electric forces. These effects help students to understand electric motors and generators.

Storms

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Materials can exist in different states—solid, liquid, and gas. Some common materials, such as water, can be changed from one state to another by heating or cooling.

Position and motion of objects

- The position and motion of objects can be changed by pushing or pulling. The size of the change is related to the strength of the push or pull.

Earth and Space Science

Changes in the earth and sky

- Weather changes from day to day and over the seasons. Weather can be described by measurable quantities, such as temperature, wind direction and speed, and precipitation.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

History and Nature of Science

Science as a human endeavor

Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Physical Science

Motions and forces

- The motion of an object can be described by its position, direction of motion, and speed. That motion can be measured and represented on a graph.
- An object that is not being subjected to a force will continue to move at a constant speed and in a straight line.
- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.
- The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.

Earth and Space Science

Structure of the earth system

- Water, which covers the majority of the earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the "water cycle." Water evaporates from the earth's surface, rises and cools as it moves to higher elevations, condenses as rain or snow, and falls to the surface where it collects in lakes, oceans, soil, and in rocks underground.
- The atmosphere is a mixture of nitrogen, oxygen, and trace gases that include water vapor. The atmosphere has different properties at different elevations.
- Clouds, formed by the condensation of water vapor, affect weather and climate.
- Global patterns of atmospheric movement influence local weather. Oceans have a major effect on climate, because water in the oceans holds a large amount of heat.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Many different people in different cultures have made and continue to make contributions to science and technology.

- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.

Science in Personal and Social Perspectives

Natural hazards

- Internal and external processes of the earth system cause natural hazards, events that change or destroy human and wildlife habitats, damage property, and harm or kill humans. Natural hazards include earthquakes, landslides, wildfires, volcanic eruptions, floods, storms, and even possible impacts of asteroids.

Risks and benefits

- Students should understand the risks associated with natural hazards (fires, floods, tornadoes, hurricanes, earthquakes, and volcanic eruptions), with chemical hazards (pollutants in air, water, soil, and food), with biological hazards (pollen, viruses, bacterial, and parasites), social hazards (occupational safety and transportation), and with personal hazards (smoking, dieting, and drinking).

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to

questions and possible modification; and it must be based on historical and current scientific knowledge.

Physical Science

Motions and forces

- Objects change their motion only when a net force is applied. Laws of motion are used to calculate precisely the effects of forces on the motion of objects. The magnitude of the change in motion can be calculated using the relationship F = ma, which is independent of the nature of the force. Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object.
- Gravitation is a universal force that each mass exerts on any other mass. The strength of the gravitational attractive force between two masses is proportional to the masses and inversely proportional to the square of the distance between them.
- The electric force is a universal force that exists between any two charged objects. Opposite charges attract while like charges repel. The strength of the force is proportional to the charges, and, as with gravitation, inversely proportional to the square of the distance between them.

Earth and Space Science

Energy in the earth system

- Heating of earth's surface and atmosphere by the sun drives convection within the atmosphere and oceans, producing winds and ocean currents.
- Global climate is determined by energy transfer from the sun at and near the earth's surface. This energy transfer is influenced by dynamic processes such as cloud cover and the earth's rotation, and static conditions such as the position of mountain ranges and oceans.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.

Science in Personal and Social Perspectives

Personal and community health

- Hazards and the potential for accidents exist. Regardless of the environment, the possibility of injury, illness, disability, or death may be present. Humans have a variety of mechanisms—sensory, motor, emotional, social, and technological—that can reduce and modify hazards.

Natural and human-induced hazards

- Normal adjustments of earth may be hazardous for humans. Humans live at the interface between the atmosphere driven by solar energy and the upper mantle where convection creates changes in the earth's solid crust. As societies have grown, become stable, and come to value aspects of the environment, vulnerability to natural processes of change has increased
- Some hazards, such as earthquakes, volcanic eruptions, and severe weather, are rapid and spectacular. But there are slow and progressive changes that also result in problems for individuals and societies. For example, change in stream channel

position, erosion of bridge foundations, sedimentation in lakes and harbors, coastal erosions, and continuing erosion and wasting of soil and landscapes can all negatively affect society.

Structure

Grades K-4

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.

Life Science

The characteristics of organisms

- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.

Earth and Space Science

Properties of earth materials

Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

Grades 5-8

Life Science

Structure and function in living systems

Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.

The Moon

Grades K-4

Science as Inquiry

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Position and motion of objects

- The position of an object can be described by locating it relative to another object or the background.
- An object's motion can be described by tracing and measuring its position over time.

Earth and Space Science

Objects in the sky

- The sun, moon, stars, clouds, birds, and airplanes all have properties, locations, and movements that can be observed and described.
- The sun provides the light and heat necessary to maintain the temperature of the earth.

Changes in the earth and sky

- Objects in the sky have patterns of movement. The sun, for example, appears to move across the sky in the same way every day, but its path changes slowly over the seasons. The moon moves across the sky on a daily basis much like the sun. The observable shape of the moon changes from day to day in a cycle that lasts about a month.

Grades 5-8

Science as Inquiry

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Earth and Space Science

Earth in the solar system

- Most objects in the solar system are in regular and predictable motion. Those motions explain such phenomena as the day, the year, phases of the moon, and eclipses.
- Gravity is the force that keeps planets in orbit around the sun and governs the rest of the motion in the solar system. Gravity alone holds us to the earth's surface and explains the phenomena of the tides.

The Planets

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.

Position and motion of objects

- The position of an object can be described by locating it relative to another object or the background.
- An object's motion can be described by tracing and measuring its position over time.

Earth and Space Science

Objects in the sky

- The sun, moon, stars, clouds, birds, and airplanes all have properties, locations, and movements that can be observed and described.
- The sun provides the light and heat necessary to maintain the temperature of the earth.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.
- Use mathematics in all aspects of scientific inquiry.

Understandings about scientific inquiry

• Mathematics is important in all aspects of scientific inquiry.

Earth and Space Science

Earth in the solar system

- The earth is the third planet from the sun in a system that includes the moon, the sun, eight other planets and their moons, and smaller objects, such as asteroids and comets. The sun, an average star, is the central and largest body in the solar system.
- Most objects in the solar system are in regular and predictable motion. Those motions explain such phenomena as the day, the year, phases of the moon, and eclipses.
- The sun is the major source of energy for phenomena on the earth's surface, such as growth of plants, winds, ocean currents, and the water cycle. Seasons result from variations in the amount of the sun's energy hitting the surface, due to the tilt of the earth's rotation on its axis and the length of the day.

The Science of Music

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Position and motion of objects

- Sound is produced by vibrating objects. The pitch of the sound can be varied by changing the rate of vibration.

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Mathematics is important in all aspects of scientific inquiry.

Physical Science

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.

Life Science

Structure and function in living systems

- Specialized cells perform specialized functions in multicellular organisms. Groups of specialized cells cooperate to form a tissue, such as a muscle. Different tissues are in turn grouped together to form larger functional units, called organs. Each type of cell, tissue, and organ has a distinct structure and set of functions that serve the organism as a whole.

History and Nature of Science

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Physical Science

Interactions of energy and matter

Waves, including sound and seismic waves, waves on water, and light waves, have energy and can transfer energy when they interact with matter.

Science and Technology

Understandings about science and technology

 Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.

The Sun

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.

Physical Science

Light, heat, electricity, and magnetism

- Light travels in a straight line until it strikes an object. Light can be reflected by a mirror, refracted by a lens, or absorbed by the object.
- Heat can be produced in many ways, such as burning, rubbing, or mixing one substance with another. Heat can move from one object to another by conduction.
- Electricity in circuits can produce light, heat, sound, and magnetic effects. Electrical circuits require a complete loop through which an electrical current can pass.
- Magnets attract and repel each other and certain kinds of other materials.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.

Earth and Space Science

Objects in the sky

- The sun, moon, stars, clouds, birds, and airplanes all have properties, locations, and movements that can be observed and described.
- The sun provides the light and heat necessary to maintain the temperature of the earth.

Science in Personal and Social Perspectives

Types of resources

- Resources are things that we get from the living and nonliving environment to meet the needs and wants of a population.
- Some resources are basic materials, such as air, water, and soil; some are produced from basic resources, such as food, fuel, and building materials; and some resources are nonmaterial, such as quiet places, beauty, security, and safety.

Grades 5-8

Physical Science

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.

Earth and Space Science

Earth in the solar system

- The earth is the third planet from the sun in a system that includes the moon, the sun, eight other planets and their moons, and smaller objects, such as asteroids and comets. The sun, an average star, is the central and largest body in the solar system.
- Most objects in the solar system are in regular and predictable motion. Those motions explain such phenomena as the day, the year, phases of the moon, and eclipses.
- Gravity is the force that keeps planets in orbit around the sun and governs the rest of the motion in the solar system. Gravity alone holds us to the earth's surface and explains the phenomena of the tides.
- The sun is the major source of energy for phenomena on the earth's surface, such as growth of plants, winds, ocean currents, and the water cycle. Seasons result from variations in the amount of the sun's energy hitting the surface, due to the tilt of the earth's rotation on its axis and the length of the day.

Science in Personal and Social Perspectives

Personal health

- The potential for accidents and the existence of hazards imposes the need for injury prevention. Safe living involves the development and use of safety precautions and the recognition of risk in personal decisions. Injury prevention has personal and social dimensions.
- Natural environments may contain substances (for example, radon and lead) that are harmful to human beings. Maintaining environmental health involves establishing or monitoring quality standards related to use of soil, water, and air.

Grades 9-12

Life Science

Interdependence of organisms

- The atoms and molecules on the earth cycle among the living and nonliving components of the biosphere.
- Energy flows through ecosystems in one direction, from photosynthetic organisms to herbivores to carnivores and decomposers.
- Organisms both cooperate and compete in ecosystems. The interrelationships and interdependencies of these organisms may generate ecosystems that are stable for hundreds or thousands of years.
- Living organisms have the capacity to produce populations of infinite size, but environments and resources are finite. This fundamental tension has profound effects on the interactions between organisms.
- Human beings live within the world's ecosystems. Increasingly, humans modify ecosystems as a result of population growth, technology, and consumption. Human destruction of habitats through direct harvesting, pollution, atmospheric changes, and other factors is threatening current global stability, and if not addressed, ecosystems will be irreversibly affected.

Matter, energy, and organization in living systems

- The energy for life primarily derives from the sun. Plants capture energy by absorbing light and using it to form strong (covalent) chemical bonds between the atoms of carbon-containing (organic) molecules. These molecules can be used to assemble larger molecules with biological activity (including proteins, DNA, sugars, and fats). In addition, the energy stored in bonds between the atoms (chemical energy) can be used as sources of energy for life processes.

Earth and Space Science

Energy in the earth system

- Earth systems have internal and external sources of energy, both of which create heat. The sun is the major external source of energy. Two primary sources of internal

energy are the decay of radioactive isotopes and the gravitational energy from the earth's original formation.

- Heating of earth's surface and atmosphere by the sun drives convection within the atmosphere and oceans, producing winds and ocean currents.
- Global climate is determined by energy transfer from the sun at and near the earth's surface. This energy transfer is influenced by dynamic processes such as cloud cover and the earth's rotation, and static conditions such as the position of mountain ranges and oceans.

Science in Personal and Social Perspectives

Personal and community health

- Hazards and the potential for accidents exist. Regardless of the environment, the possibility of injury, illness, disability, or death may be present. Humans have a variety of mechanisms—sensory, motor, emotional, social, and technological—that can reduce and modify hazards.

Natural resources

- Human populations use resources in the environment in order to maintain and improve their existence. Natural resources have been and will continue to be used to maintain human populations.
- Humans use many natural systems as resources. Natural systems have the capacity to reuse waste, but that capacity is limited. Natural systems can change to an extent that exceeds the limits of organisms to adapt naturally or humans to adapt technologically.

Environmental quality

- Many factors influence environmental quality. Factors that students might investigate include population growth, resource use, population distribution, overconsumption, the capacity of technology to solve problems, poverty, the role of economic, political, and religious views, and different ways humans view the earth.

Natural and human-induced hazards

- Human activities can enhance potential for hazards. Acquisition of resources, urban growth, and waste disposal can accelerate rates of natural change.

Time

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Position and motion of objects

- The position of an object can be described by locating it relative to another object or the background.
- An object's motion can be described by tracing and measuring its position over time. Objects in the sky
 - The sun, moon, stars, clouds, birds, and airplanes all have properties, locations, and movements that can be observed and described.

Changes in the earth and sky

- Objects in the sky have patterns of movement. The sun, for example, appears to move across the sky in the same way every day, but its path changes slowly over the seasons. The moon moves across the sky on a daily basis much like the sun. The observable shape of the moon changes from day to day in a cycle that lasts about a month.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.

Abilities to distinguish between natural objects and objects made by humans

- Some objects occur in nature; others have been designed and made by people to solve human problems and enhance the quality of life.
- Objects can be categorized into two groups, natural and designed.

History and Nature of Science

- Science as a human endeavor
 - Science and technology have been practiced by people for a long time.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Mathematics is important in all aspects of scientific inquiry.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.
- Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. The scientific community accepts and uses such explanations until displaced by better scientific ones. When such displacement occurs, science advances.

Physical Science

Motions and forces

- The motion of an object can be described by its position, direction of motion, and speed. That motion can be measured and represented on a graph.
- An object that is not being subjected to a force will continue to move at a constant speed and in a straight line.
- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

Earth and Space Science

Earth in the solar system

- Most objects in the solar system are in regular and predictable motion. Those motions explain such phenomena as the day, the year, phases of the moon, and eclipses.
- Gravity is the force that keeps planets in orbit around the sun and governs the rest of the motion in the solar system. Gravity alone holds us to the earth's surface and explains the phenomena of the tides.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Many different people in different cultures have made and continue to make contributions to science and technology.
- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for

better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to questions and possible modification; and it must be based on historical and current scientific knowledge.

Physical Science

Motions and forces

- Objects change their motion only when a net force is applied. Laws of motion are used to calculate precisely the effects of forces on the motion of objects. The magnitude of the change in motion can be calculated using the relationship F = ma, which is independent of the nature of the force. Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object.
- Gravitation is a universal force that each mass exerts on any other mass. The strength of the gravitational attractive force between two masses is proportional to the masses and inversely proportional to the square of the distance between them.

Science and Technology

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Volcanoes

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.
- Use data to construct a reasonable explanation.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Materials can exist in different states—solid, liquid, and gas. Some common materials, such as water, can be changed from one state to another by heating or cooling.

Earth and Space Science

Properties of earth materials

- Soils have properties of color and texture, capacity to retain water, and ability to support the growth of many kinds of plants, including those in our food supply.

Changes in the earth and sky

- The surface of the earth changes. Some changes are due to slow processes, such as erosion and weathering, and some changes are due to rapid processes, such as landslides, volcanic eruptions, and earthquakes.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.

- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence. Understandings about scientific inquiry
 - Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.

Earth and Space Science

Structure of the earth system

- The solid earth is layered with a lithosphere; hot, convecting mantle; and dense, metallic core.
- Lithospheric plates on the scales of continents and oceans constantly move at rates of centimeters per year in response to movements in the mantle. Major geological events, such as earthquakes, volcanic eruptions, and mountain building, result from these plate motions.
- Land forms are the result of a combination of constructive and destructive forces. Constructive forces include crustal deformation, volcanic eruption, and deposition of sediment, while destructive forces include weathering and erosion.
- Some changes in the solid earth can be described as the "rock cycle." Old rocks at the earth's surface weather, forming sediments that are buried, then compacted, heated, and often recrystallized into new rock. Eventually, those new rocks may be brought to the surface by the forces that drive plate motions, and the rock cycle continues.
- Living organisms have played many roles in the earth system, including affecting the composition of the atmosphere, producing some types of rocks, and contributing to the weathering of rocks.

Science in Personal and Social Perspectives

Natural hazards

- Internal and external processes of the earth system cause natural hazards, events that change or destroy human and wildlife habitats, damage property, and harm or kill humans. Natural hazards include earthquakes, landslides, wildfires, volcanic eruptions, floods, storms, and even possible impacts of asteroids.

Risks and benefits

- Students should understand the risks associated with natural hazards (fires, floods, tornadoes, hurricanes, earthquakes, and volcanic eruptions), with chemical hazards (pollutants in air, water, soil, and food), with biological hazards (pollen, viruses, bacterial, and parasites), social hazards (occupational safety and transportation), and with personal hazards (smoking, dieting, and drinking).

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.

Nature of science

- Scientists formulate and test their explanations of nature using observation, experiments, and theoretical and mathematical models. Although all scientific ideas are tentative and subject to change and improvement in principle, for most major ideas in science, there is much experimental and observational confirmation. Those ideas are not likely to change greatly in the future. Scientists do and have changed their ideas about nature when they encounter new experimental evidence that does not match their existing explanations.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientists rely on technology to enhance the gathering and manipulation of data. New techniques and tools provide new evidence to guide inquiry and new methods to gather data, thereby contributing to the advance of science. The accuracy and precision of the data, and therefore the quality of the exploration, depends on the technology used.
- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to questions and possible modification; and it must be based on historical and current scientific knowledge.

Physical Science

Motions and forces

- Objects change their motion only when a net force is applied. Laws of motion are used to calculate precisely the effects of forces on the motion of objects. The magnitude of the change in motion can be calculated using the relationship F = ma, which is independent of the nature of the force. Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object.

Earth and Space Science

Energy in the earth system

- Earth systems have internal and external sources of energy, both of which create heat. The sun is the major external source of energy. Two primary sources of internal energy are the decay of radioactive isotopes and the gravitational energy from the earth's original formation.

- The outward transfer of earth's internal heat drives convection circulation in the mantle that propels the plates comprising earth's surface across the face of the globe. The origin and evolution of the earth system
 - Interactions among the solid earth, the oceans, the atmosphere, and organisms have resulted in the ongoing evolution of the earth system. We can observe some changes such as earthquakes and volcanic eruptions on a human time scale, but many processes such as mountain building and plate movements take place over hundreds of millions of years.

Science and Technology

Understandings about science and technology

- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

Science in Personal and Social Perspectives

Natural and human-induced hazards

- Some hazards, such as earthquakes, volcanic eruptions, and severe weather, are rapid and spectacular. But there are slow and progressive changes that also result in problems for individuals and societies. For example, change in stream channel position, erosion of bridge foundations, sedimentation in lakes and harbors, coastal erosions, and continuing erosion and wasting of soil and landscapes can all negatively affect society.
- Natural and human-induced hazards present the need for humans to assess potential danger and risk. Many changes in the environment designed by humans bring benefits to society, as well as cause risks. Students should understand the costs and trade-offs of various hazards—ranging from those with minor risk to a few people to major catastrophes with major risk to many people. The scale of events and the accuracy with which scientists and engineers can (and cannot) predict events are important considerations.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Water Cycle

Grades K-4 Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Employ simple equipment and tools to gather data and extend the senses.

Physical Science

Properties of objects and materials

- Materials can exist in different states—solid, liquid, and gas. Some common materials, such as water, can be changed from one state to another by heating or cooling.

Life Science

The characteristics of organisms

 Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.

Organisms and their environments

- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.

Changes in the earth and sky

- Weather changes from day to day and over the seasons. Weather can be described by measurable quantities, such as temperature, wind direction and speed, and precipitation.

History and Nature of Science

Science as a human endeavor

- Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of

substances often can be separated into the original substances using one or more of the characteristic properties.

Chemical elements do not break down during normal laboratory reactions involving such treatments as heating, exposure to electric current, or reaction with acids. There are more than 100 known elements that combine in a multitude of ways to produce compounds, which account for the living and nonliving substances that we encounter.

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.
- The sun is a major source of energy for changes on the earth's surface. The sun loses _ energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.

Earth and Space Science

Structure of the earth system

- Water, which covers the majority of the earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the "water cycle." Water evaporates from the earth's surface, rises and cools as it moves to higher elevations, condenses as rain or snow, and falls to the surface where it collects in lakes, oceans, soil, and in rocks underground.
- Water is a solvent. As it passes through the water cycle it dissolves minerals and
- gases and carries them to the oceans. The atmosphere is a mixture of nitrogen, oxygen, and trace gases that include water vapor. The atmosphere has different properties at different elevations.
- Clouds, formed by the condensation of water vapor, affect weather and climate.
- Global patterns of atmospheric movement influence local weather. Oceans have a major effect on climate, because water in the oceans holds a large amount of heat.

Science in Personal and Social Perspectives

Personal health

Natural environments may contain substances (for example, radon and lead) that are harmful to human beings. Maintaining environmental health involves establishing or monitoring quality standards related to use of soil, water, and air.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.

Physical Science

Structure and properties of matter

Solids, liquids, and gases differ in the distances and angles between molecules or atoms and therefore the energy that binds them together. In solids the structure is nearly rigid; in liquids molecules or atoms move around each other but do not move apart; and in gases molecules or atoms move almost independently of each other and are mostly far apart.

Life Science

Interdependence of organisms

- Living organisms have the capacity to produce populations of infinite size, but environments and resources are finite. This fundamental tension has profound effects on the interactions between organisms.

Earth and Space Science

Energy in the earth system

- Global climate is determined by energy transfer from the sun at and near the earth's surface. This energy transfer is influenced by dynamic processes such as cloud cover and the earth's rotation, and static conditions such as the position of mountain ranges and oceans.

Natural resources

- Human populations use resources in the environment in order to maintain and improve their existence. Natural resources have been and will continue to be used to maintain human populations.
- The earth does not have infinite resources; increasing human consumption places severe stress on the natural processes that renew some resources, and it depletes those resources that cannot be renewed.

Environmental quality

- Natural ecosystems provide an array of basic processes that affect humans. Those processes include maintenance of the quality of the atmosphere, generation of soils, control of the hydrologic cycle, disposal of wastes, and recycling of nutrients. Humans are changing many of these basic processes, and the changes may be detrimental to humans.
- Materials from human societies affect both physical and chemical cycles of the earth.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Waves

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Employ simple equipment and tools to gather data and extend the senses.

Understandings about scientific inquiry

Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.

Physical Science

Position and motion of objects

- Sound is produced by vibrating objects. The pitch of the sound can be varied by changing the rate of vibration.

Light, heat, electricity, and magnetism

- Light travels in a straight line until it strikes an object. Light can be reflected by a mirror, refracted by a lens, or absorbed by the object.

Science and Technology

Understandings about science and technology

- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Understandings about scientific inquiry
 - Mathematics is important in all aspects of scientific inquiry.

Physical Science

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Light interacts with matter by transmission (including refraction), absorption, or scattering (including reflection). To see an object, light from that object—emitted by or scattered from it—must enter the eye.
- The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation.

Grades 9-12

Science as Inquiry

Understandings about scientific inquiry

- Mathematics is essential in scientific inquiry. Mathematical tools and models guide and improve the posing of questions, gathering data, constructing explanations and communicating results.

Physical Science Interactions of energy and matter - Waves, including sound and seismic waves, waves on water, and light waves, have energy and can transfer energy when they interact with matter.

Wetlands

Grades K-4

Science as Inquiry

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Objects have many observable properties, including size, weight, shape, color, temperature, and the ability to react with other substances. Those properties can be measured using tools, such as rulers, balances, and thermometers.
- Objects are made of one or more materials, such as paper, wood, and metal. Objects can be described by the properties of the materials from which they are made, and those properties can be used to separate or sort a group of objects or materials.
- Materials can exist in different states—solid, liquid, and gas. Some common materials, such as water, can be changed from one state to another by heating or cooling.

Life Science

The characteristics of organisms

- Organisms have basic needs. For example, animals need air, water, and food; plants require air, water, nutrients, and light. Organisms can survive only in environments in which their needs can be met. The world has many different environments, and distinct environments support the life of different types of organisms.
- Each plant or animal has different structures that serve different functions in growth, survival, and reproduction. For example, humans have distinct body structures for walking, holding, seeing, and talking.
- The behavior of individual organisms is influenced by internal cues (such as hunger) and by external cues (such as a change in the environment). Humans and other organisms have senses that help them detect internal and external cues.

Organisms and their environments

- All animals depend on plants. Some animals eat plants for food. Other animals eat animals that eat the plants.
- An organism's patterns of behavior are related to the nature of that organism's environment, including the kinds and numbers of other organisms present, the availability of food and resources, and the physical characteristics of the environment. When the environment changes, some plants and animals survive and reproduce, and others die or move to new locations.
- All organisms cause changes in the environment where they live. Some of these changes are detrimental to the organism or other organisms, whereas others are beneficial.
- Humans depend on their natural and constructed environments. Humans change environments in ways that can be either beneficial or detrimental for themselves and other organisms.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.
- Soils have properties of color and texture, capacity to retain water, and ability to support the growth of many kinds of plants, including those in our food supply.

Changes in the earth and sky - The surface of the earth changes. Some

- The surface of the earth changes. Some changes are due to slow processes, such as erosion and weathering, and some changes are due to rapid processes, such as landslides, volcanic eruptions, and earthquakes.

Science and Technology

Understandings about science and technology

- People have always had questions about their world. Science is one way of answering questions and explaining the natural world.
- People have always had problems and invented tools and techniques (ways of doing something) to solve problems. Trying to determine the effects of solutions helps people avoid some new problems.
- Women and men of all ages, backgrounds, and groups engage in a variety of scientific and technological work.
- Tools help scientists make better observations, measurements, and equipment for investigations. They help scientists see, measure, and do things that they could not otherwise see, measure, and do.

Science in Personal and Social Perspectives

Changes in environments

- Environments are the space, conditions, and factors that affect an individual's and a population's ability to survive and their quality of life.
- Changes in environments can be natural or influenced by humans. Some changes are good, some are bad, and some are neither good nor bad. Pollution is a change in the environment that can influence the health, survival, or activities of organisms, including humans.
- Some environmental changes occur slowly, and others occur rapidly. Students should understand the different consequences of changing environments in small increments over long periods as compared with changing environments in large increments over short periods.

History and Nature of Science

Science as a human endeavor

Many people choose science as a career and devote their entire lives to studying it. Many people derive great pleasure from doing science.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.

- Develop descriptions, explanations, predictions, and models using evidence. Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.
- Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Physical Science

Properties and changes of properties in matter

 A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.

Regulation and behavior

- All orgainisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.
- The number of organisms an ecosystem can support depends on the resources available and abiotic factors, such as quantity of light and water, range of temperatures, and soil composition. Given adequate biotic and abiotic resources and no disease or predators, populations (including humans) increase at rapid rates. Lack of resources and other factors, such as predation and climate, limit the growth of populations in specific niches in the ecosystem.

Earth and Space Science

Structure of the earth system

- Soil consists of weathered rocks and decomposed organic material from dead plants, animals, and bacteria. Soils are often found in layers, with each having a different chemical composition and texture.
- Water, which covers the majority of the earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the "water cycle." Water evaporates from the earth's surface, rises and cools as it moves to higher elevations, condenses as rain or snow, and falls to the surface where it collects in lakes, oceans, soil, and in rocks underground.
- Water is a solvent. As it passes through the water cycle it dissolves minerals and gases and carries them to the oceans.

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.

- Many different people in different cultures have made and continue to make contributions to science and technology.
- Science and technology are reciprocal. Science helps drive technology, as it addresses questions that demand more sophisticated instruments and provides principles for better instrumentation and technique. Technology is essential to science, because it provides instruments and techniques that enable observations of objects and phenomena that are otherwise unobservable due to factors such as quantity, distance, location, size, and speed. Technology also provides tools for investigations, inquiry, and analysis.
- Perfectly designed solutions do not exist. All technological solutions have trade-offs, such as safety, cost, efficiency, and appearance. Engineers often build in back-up systems to provide safety. Risk is part of living in a highly technological world. Reducing risk often results in new technology.
- Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.
- Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.

Science in Personal and Social Perspectives

Science and technology in society

- Science influences society through its knowledge and world view. Scientific knowledge and the procedures used by scientists influence the way many individuals in society think about themselves, others, and the environment. The effect of science on society is neither entirely beneficial nor entirely detrimental.
- Science cannot answer all questions and technology cannot solve all human problems or meet all human needs. Students should understand the difference between scientific and other questions. They should appreciate what science and technology can reasonably contribute to society and what they cannot do. For example, new technologies often will decrease some risks and increase others.

History and Nature of Science

Science as a human endeavor

- Women and men of various social and ethnic backgrounds—and with diverse interests, talents, qualities, and motivations—engage in the activities of science, engineering, and related fields such as the health professions. Some scientists work in teams, and some work alone, but all communicate extensively with others.
- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

Grades 9-12

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions and concepts that guide scientific investigations.
- Design and conduct scientific investigations.
- Use technology and mathematics to improve investigations and communications.
- Formulate and revise scientific explanations and models using logic and evidence.

Understandings about scientific inquiry

- Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.
- Scientists conduct investigations for a wide variety of reasons. For example, they may wish to discover new aspects of the natural world, explain recently observed phenomena, or test the conclusions of prior investigations or the predictions of current theories.
- Scientific explanations must adhere to criteria such as: a proposed explanation must be logically consistent; it must abide by the rules of evidence; it must be open to questions and possible modification; and it must be based on historical and current scientific knowledge.

Physical Science

Structure and properties of matter

- The physical properties of compounds reflect the nature of the interactions among its molecules. These interactions are determined by the structure of the molecule, including the constituent atoms and the distances and angles between them.

Life Science

Interdependence of organisms

- Human beings live within the world's ecosystems. Increasingly, humans modify ecosystems as a result of population growth, technology, and consumption. Human destruction of habitats through direct harvesting, pollution, atmospheric changes, and other factors is threatening current global stability, and if not addressed, ecosystems will be irreversibly affected.

Understandings about science and technology

- Scientists in different disciplines ask different questions, use different methods of investigation, and accept different types of evidence to support their disciplines, including engineering. New disciplines of science, such as geophysics and biochemistry often emerge at the interface of two older disciplines.
- Science often advances with the introduction of new technologies. Solving technological problems often results in new scientific knowledge. New technologies often extend the current levels of scientific understanding and introduce new areas of research.
- Creativity, imagination, and a good knowledge base are all required in the work of science and engineering.
- Science and technology are pursued for different purposes. Scientific inquiry is driven by the desire to understand the natural world, and technological design is driven by the need to meet human needs and solve human problems. Technology, by its nature, has a more direct effect on society than science because its purpose is to solve human problems, help humans adapt, and fulfill human aspirations. Technological solutions may create new problems. Science, by its nature, answers questions that may or may not directly influence humans. Sometimes scientific advances challenge people's beliefs and practical explanations concerning various aspects of the world.

Science in Personal and Social Perspectives

Natural resources

- The earth does not have infinite resources; increasing human consumption places severe stress on the natural processes that renew some resources, and it depletes those resources that cannot be renewed.

- Humans use many natural systems as resources. Natural systems have the capacity to reuse waste, but that capacity is limited. Natural systems can change to an extent that exceeds the limits of organisms to adapt naturally or humans to adapt technologically.

Environmental quality

- Natural ecosystems provide an array of basic processes that affect humans. Those processes include maintenance of the quality of the atmosphere, generation of soils, control of the hydrologic cycle, disposal of wastes, and recycling of nutrients. Humans are changing many of these basic processes, and the changes may be detrimental to humans.
- Materials from human societies affect both physical and chemical cycles of the earth.
- Many factors influence environmental quality. Factors that students might investigate include population growth, resource use, population distribution, overconsumption, the capacity of technology to solve problems, poverty, the role of economic, political, and religious views, and different ways humans view the earth.

Natural and human-induced hazards

- Human activities can enhance potential for hazards. Acquisition of resources, urban growth, and waste disposal can accelerate rates of natural change.
- Some hazards, such as earthquakes, volcanic eruptions, and severe weather, are rapid and spectacular. But there are slow and progressive changes that also result in problems for individuals and societies. For example, change in stream channel position, erosion of bridge foundations, sedimentation in lakes and harbors, coastal erosions, and continuing erosion and wasting of soil and landscapes can all negatively affect society.
- Natural and human-induced hazards present the need for humans to assess potential danger and risk. Many changes in the environment designed by humans bring benefits to society, as well as cause risks. Students should understand the costs and trade-offs of various hazards—ranging from those with minor risk to a few people to major catastrophes with major risk to many people. The scale of events and the accuracy with which scientists and engineers can (and cannot) predict events are important considerations.

Science and technology in local, national, and global challenges

- Science and technology are essential social enterprises, but alone they can only indicate what can happen, not what should happen. The latter involves human decisions about the use of knowledge.
- Understanding basic concepts and principles of science and technology should precede active debate about the economics, policies, politics, and ethics of various science- and technology-related challenges. However, understanding science alone will not resolve local, national, or global challenges.
- Humans have a major effect on other species. For example, the influence of humans on other organisms occurs through land use—which decreases space available to other species—and pollution—which changes the chemical composition of air, soil, and water.

History and Nature of Science

Science as a human endeavor

- Individuals and teams have contributed and will continue to contribute to the scientific enterprise. Doing science or engineering can be as simple as an individual conducting field studies or as complex as hundreds of people working on a major scientific question or technological problem. Pursuing science as a career or as a hobby can be both fascinating and intellectually rewarding.

Nature of scientific knowledge

- Science distinguishes itself from other ways of knowing and from other bodies of knowledge through the use of empirical standards, logical arguments, and

skepticism, as scientists strive for the best possible explanations about the natural world.

Wind

Grades K-4

Science as Inquiry

Abilities necessary to do scientific inquiry

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Use data to construct a reasonable explanation.
- Communicate investigations and explanations.

Understandings about scientific inquiry

- Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
- Scientists use different kinds of investigations depending on the questions they are trying to answer. Types of investigations include describing objects, events, and organisms; classifying them; and doing a fair test (experimenting).
- Simple instruments, such as magnifiers, thermometers, and rulers, provide more information than scientists obtain using only their senses.
- Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge). Good explanations are based on evidence from investigations.

Physical Science

Properties of objects and materials

- Materials can exist in different states—solid, liquid, and gas. Some common materials, such as water, can be changed from one state to another by heating or cooling.

Earth and Space Science

Properties of earth materials

- Earth materials are solid rocks and soils, water, and the gases of the atmosphere. The varied materials have different physical and chemical properties, which make them useful in different ways, for example, as building materials, as sources of fuel, or for growing the plants we use as food. Earth materials provide many of the resources that humans use.
- Soils have properties of color and texture, capacity to retain water, and ability to support the growth of many kinds of plants, including those in our food supply.
- Fossils provide evidence about the plants and animals that lived long ago and the nature of the environment at that time.

Objects in the sky

- The sun provides the light and heat necessary to maintain the temperature of the earth.
 - Changes in the earth and sky
- Weather changes from day to day and over the seasons. Weather can be described by measurable quantities, such as temperature, wind direction and speed, and precipitation.

Grades 5-8

Science as Inquiry

Abilities necessary to do scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.

- Think critically and logically to make the relationships between evidence and explanations.
- Recognize and analyze alternative explanations and predictions.
- Communicate scientific procedures and explanations.
- Use mathematics in all aspects of scientific inquiry.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
- Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

Physical Science

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.
- Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.

Earth and Space Science

Structure of the earth system

- Land forms are the result of a combination of constructive and destructive forces. Constructive forces include crustal deformation, volcanic eruption, and deposition of sediment, while destructive forces include weathering and erosion.
- Water, which covers the majority of the earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the "water cycle." Water evaporates from the earth's surface, rises and cools as it moves to higher elevations, condenses as rain or snow, and falls to the surface where it collects in lakes, oceans, soil, and in rocks underground.

Earth's history

- The earth processes we see today, including erosion, movement of lithospheric plates, and changes in atmospheric composition, are similar to those that occurred in the past. earth history is also influenced by occasional catastrophes, such as the impact of an asteroid or comet.
- Fossils provide important evidence of how life and environmental conditions have changed.

Grades 9-12

Earth and Space Science

Energy in the earth system

- Earth systems have internal and external sources of energy, both of which create heat. The sun is the major external source of energy. Two primary sources of internal energy are the decay of radioactive isotopes and the gravitational energy from the earth's original formation.
- Heating of earth's surface and atmosphere by the sun drives convection within the atmosphere and oceans, producing winds and ocean currents.
- Global climate is determined by energy transfer from the sun at and near the earth's surface. This energy transfer is influenced by dynamic processes such as cloud cover and the earth's rotation, and static conditions such as the position of mountain ranges and oceans.

-